mathr / blog / #

Clusters 3D

I implemented a little widget in HTML5 Javascript and WebGL:

/clusters/

It's inspired by Clusters by Jeffrey Ventrella, but its source seems to be obfuscated so I couldn't see how it worked. Instead I worked backwards from the referenced ideas of Lynn Margulis. I modelled a symbiotic system by a bunch of particles, each craving or disgusted by the emissions of the others. There are a settable number of different substances, and (currently hardcoded) 24 different species with their own tastes, represented by different colours. The particle count is settable too, but due to a bug in my code you have to manually refresh the page after doing it (and don't go too high, the slow down is \(O(n^2)\)).

Some seeds give really interesting large-scale structures that chase each other around, with bits peeling off and joining other groupings. If A is attracted to B but B is repulsed by A, then a pursuit ensues. If the generated rule weights (576 numbers with the default settings) align just right you can get a chain or even a ring that becomes stable and spins on its own accord. Other structures include concentric shells in near-spherical blobs.

One thing I'm not happy with is the friction - I had to add it to make the larger clusters stable, but it makes smaller clusters less mobile. There's probably something my naive model misses from Ventrella's original, maybe some kind of satiation and transfer of actual materials between particles, rather than a per-species (dis)like tendency. If more satiated particles were to move less quickly than hungry particles, that might fix it. I'll try it another day!