
clive workshop

Claude Heiland-Allen

2022-01-15

clive workshop

Introduction

Claude

My name is Claude Heiland-Allen. I’m from London, UK.
I’m interested in art, computers, free software, maths,
science.
I https://mathr.co.uk
I https://mathr.co.uk/blog
I mailto:claude@mathr.co.uk

https://mathr.co.uk
https://mathr.co.uk/blog
mailto:claude@mathr.co.uk

clive

I perform live music by coding in the C programming
language, to manipulate audio processing algorithms while
they are running.
I https://mathr.co.uk/clive
I https://mathr.co.uk/blog/livecode.html
I https://code.mathr.co.uk/clive-workshop

https://mathr.co.uk/clive
https://mathr.co.uk/blog/livecode.html
https://code.mathr.co.uk/clive-workshop

today

I Install Party
I Digital Audio
I Time-based Synthesis
I Feedback Processes

Install Party

website

This presentation is online:
https://mathr.co.uk/clive/workshop/2022-01-15.html
https://mathr.co.uk/clive/workshop/2022-01-15.pdf
Access it now so you can copy/paste.

https://mathr.co.uk/clive/workshop/2022-01-15.html
https://mathr.co.uk/clive/workshop/2022-01-15.pdf

roadmap

I install dependencies
I get clive using git

I test

Linux Sound

“The nice thing about standards is there are so many to
choose from”
I OSS - Open Sound System
I ALSA - Advanced Linux Sound Architecture
I JACK Audio Connection Kit (“pro” audio)
I PulseAudio (“consumer” audio)
I PipeWire (the future, unifies all of the above)

clive-server Audio

clive-server was originally JACK-only.
But now it can work with other APIs too, via SDL2.

Configuring Linux Sound

Hopefully you have sound working already.
Goal 0 of this workshop:
I don’t break your working configuration, even if it is

not “perfect”.

Command Line Terminal

Most of the installation and configuration will require using
the terminal shell to enter text commands.
Important commands include:
I ls – lists the files in the current working directory
I mkdir ~/code – makes a directory called code in

your home folder
I cd ~/code – changes the current working directory

Install Dependencies

For Debian (and other apt-based distributions like Ubuntu):
sudo apt install \

git ca-certificates \
build-essential pkg-config \
htop xterm geany nano \
libsdl2-dev libjack-jackd2-dev

Other distributions should have similar packages.

git
git is a distributed version control system for managing
evolving changes to text documents, primarily computer
source code.
We will be working offline, after the initial clone operation.
git needs to know who you are when commiting your
code changes:
git config --global user.name "My Name"
git config --global user.email "my@email"

If you publish your repository, this will be made public.

xrandr (optional)
clive window sizes are optimized for 1920x1080 screen.
Check the identifiers of your displays:
xrandr

My laptop has only 1366x768 display. I fake it:
xrandr \

--output LVDS-0 \
--scale-from 1920x1080 \
--same-as HDMI-0

This is temporary (until logout).

Get clive

clive consists of a server, client, launch scripts, and user
code, all in one repository:
mkdir -p ~/code
cd ~/code
git clone \

https://code.mathr.co.uk/clive-workshop.git
cd clive-workshop

Build clive-server

clive-server is the part that runs the code and makes the
sound.
If you know you are using JACK:
make -C server API=jack

otherwise you are probably using PulseAudio:
make -C server API=sdl2

Build clive-client

clive-client is the part that watches for code changes and
runs the compiler.
The compiler converts source code text that humans can
understands into machine code that the CPU can
understand.
make -C client

Test clive

To test:
cd ~/code/clive-workshop
git checkout metronome
./launch/local-native-sse.sh

You should hear regular beeping.
To exit, hit Ctrl-C in the terminal you started the launch
script in.

Break time

Take a short break.

Digital Audio

Digital audio
I Real world is

continuous.
I Digital world is

discrete.
I Sample points equally

spaced in time.

Aliasing
I Shannon-Nyquist

sampling theorem says
when this
approximation is ok.

I Too-high frequencies
fold over back into
lower frequencies.

Audio properties

I Volume
I Frequency

I Pitch
I Rhythm

I Timbre
I Tones
I Noise

Volume
I Larger values are louder
I Logarithmic perception
I Adding 10 decibels

increases level by 10
times

Pitch
I Higher frequencies are

higher pitch
I Logarithmic perception
I Adding 1 octave

increases frequency by
2 times

Noise
I White noise: equal

energy per frequency
I Pink noise: equal

energy per octave
(3 dB/octave falloff)

I Brown noise: low-pass
filtered white noise
(6 dB/octave falloff)

Audio processing
I Stateful transformation over time.
I Volume control: no history

out = V * in

I Phasor: internal state
phase = wrap(phase + in * factor)
out = phase

I Recursive filters: internal state and feedback
state, out = function(state, in, previous_out)

Architecture
I user code

I defines audio processing algorithms

I client
I watches source code directory
I recompiles to shared library

I server generates audio
I watches build output directory
I loads shared library

I launch scripts

Implementation details

I Stack memory is temporary (in, out)
I Heap memory is preserved (state, S *s)
I Function is called every sample (go())
I Saving the file triggers recompilation
I Successful compilation triggers code hotswap

Comparison to other software
I Pure-data

I variable block size down to 1 sample, plus [fexpr~]

I deterministic
I xruns when recompiling modified DSP graph

I SuperCollider3
I fixed block size
I realtime safe
I sometimes unpredictable latency

I Transfer of knowledge: maths / dataflow / ugens

Workshop goals

0. don’t break your working system
1. git version control system basics
I clone, status, commit, branch, tag
2. C programming for audio
3. digital audio processing

Example track

https://mathr.co.uk/clive/workshop/
2022-01-15/claude.html

https://mathr.co.uk/clive/workshop/2022-01-15/claude.html
https://mathr.co.uk/clive/workshop/2022-01-15/claude.html

time-based synthesis

metronome

Launch clive:
cd ~/code/clive-workshop
git checkout metronome
./launch/local-native-sse.sh

If using JACK or PipeWire: useful to have qjackctl or other
monitor open.

windows

I The terminal where you started clive from.
I server top left, status display in case of crashes.
I client middle left, displays compilation messages.

Pay attention to this window in case of mistakes.
I htop bottom left, system monitor, useful to have.
I Geany text editor where the main action happens.

edit

I In Geany, change the BPM and hit Ctrl-S to save.
You should hear the tempo change (after a short
delay; learn the latency of your machine).
You should see messages in the client window,
hopefully no errors.

I Change the Hz frequency and hit Ctrl-S to save. You
should hear the pitch change.

safety

I Adjust the volume control of your soundcard to very
low.

I In Geany, set the volume to 10.0 (!) and save.
I Increase the main volume as much as is comfortable.
I In Geany, adjust the volume less than 1.0 again.

code structure
At the top of go.c are some boilerplate definitions.
Then the memory layout, typedef struct { ... } S.
The first member of the struct must be an int. It gets
set to 1 when the code is reloaded.
Finally the callback function go(). It gets passed the
memory as an S * (pointer to S), as well as the audio
buffers and their sizes.
The other files loaded into Geany are to make code
completion in the editor work better.

memory layout

I memory is just a list of
numbers

I struct defines the
memory layout
I names
I meaning

I structs can be nested
(e.g. COMPRESS has
arrays of HIP, LOP).

Example struct

The image in the previous slide corresponds to:
typedef struct {

int reloaded;
PHASOR clock;
PHASOR osc;
LOP lop;
BIQUAD bq;
COMPRESS compress;

} S;

changing struct

It’s only safe to add things at the bottom.
Deleting, inserting or reordering items can cause problems.
This is because the underlying memory is not updated to
match the new description.

C language

Most spaces are insignificant.
Statements end in ;

Blocks are wrapped in { }

Declarations statements have a type (usually sample) and
a name optionally followed = by an initializer (then ;).
Operators include: = == < > + - * /, full list at:
https://en.wikipedia.org/wiki/Operators_in_C_and_C
%2B%2B#Operator_precedence

https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence
https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B#Operator_precedence

C comments

Comments are useful for disabling code without deleting it.
One-line comments start with //.
Block comments are wrapped in /* */, they don’t nest.
Larger blocks can be disabled with #if 0:
#if 0
...
#endif

Re-enable with #if 1.

errors

It is easy to make a mistake.
Watch the client window. The first error is the most
important, you may need to scroll up with Shift-PgUp.
Line numbers tell you where the error is.
Most mistakes are typos. Look at the relevant line
carefully.
If your edits are not changing the sound at all, you might
have an error.

common mistakes

I error: expected ‘;’ before ...
I add a ;

I error: expected ... before ‘)’
I delete a) or add a (

I error: expected ‘)’ before ...
I add a) or delete a (

I typo similar to a 8 b (should be a * b)

spelling mistakes
I error: stray ‘\###’ in program

error: invalid suffix ...
I names are ASCII A-Za-z_0-9, no first number

I warning: unused variable ‘...’
I you probably used something else instead

I error: ‘S’ has no member named ...
I you forgot to add the item to the struct

I error: duplicate member ‘...’
I you added an item to a struct more than once

declaration mistakes

I error: ‘...’ undeclared
I you forgot to declare the variable with sample

I error: redefinition of ‘...’
I each name should only be declared once

I error: invalid initializer
I initializing an array needs { ... }

scope mistakes
I error: expected identifier or ‘(’ before

I usually missing {

I error: expected declaration or statement
I usually missing }

I warning: this ‘if’ clause does not guard
I usually missing { ... } around if body

I warning: suggest parentheses around
assignment used as truth value
I you used = instead of == inside if()

structure mistakes
I error: ‘...’ is a pointer

I replace . with ->

I error: invalid type argument of ‘->’
I replace -> with .

I error: incompatible type for argument ...
I often, replace s->item with &s->item

I error: label ‘s’ used but not defined
I replace &&s with &s

function mistakes

I error: too few arguments to function ‘...’

error: too many arguments to function
‘...’
I check the function prototype in Geany by typing a (after

the function name

I warning: passing argument ... incompatible
pointer
I you probably meant a different struct member

crash errors
I Illegal instruction ./clive-server

Floating point exception ./clive-server
I integer division by 0

I Segmentation fault ./clive-server
I accessing memory out of range
I array index too big or negative
I often caused by inserting in middle of struct

I warning: array subscript ... above bounds
I your [number] is too large – index starts at 0

out

The bottom of go.c fills in the output arrays:
out[0] is left audio
out[1] is right audio
Output signals should be between -1 and 1.
See qjackctl → connections window.

bpm
A sample is a number supporting fractional values:
sample bpm; // in struct

Choose the tempo in beats per minute:
s->bpm = 125; // in go()

To convert BPM into (16 beats) per second:
sample hz_for_4_bars = s->bpm / 60 / 16;

Remember points if a value isn’t already a sample:
125 / 60 == 2
125.0 / 60.0 == 2.0833333333333335

phasor
In struct section, the PHASOR preserves the phase
between function calls:
PHASOR clock;

In go section, this advances the phase one sample and
returns it into t:
sample t = phasor(&s->clock, s->bpm / 60 / 16);

Audio oscillators have phase too:
PHASOR osc; // in struct
sample p = phasor(&s->osc, 440); // in go()

wrap
The clock phase ramps up from 0 to 1 every 4 bars:
sample t = phasor(&s->clock, s->bpm / 60 / 16);

To make a ramp for 1 bar:
sample bar = wrap(4 * t);

To make a ramp for 1 beat:
sample beat = wrap(4 * bar);

Fractional multipliers are also possible:
sample beat = wrap(8.0 / 3.0 * bar);

envelope
A volume envelope is the variation of volume over time.
The beat phase can be used, it fades in:
sample env = beat;

Another variation is either on or off, a rectangle pulse:
sample duty = 0.25;
sample env = beat < duty;

A more percussive envelope:
sample env = 1 - beat;

beat ramps from 0 to 1, so env ramps from 1 to 0.

pow

Percussive volume envelopes start loud and end quiet:
sample env = 1 - beat;

Envelopes sound better with a bit of a curve:
env = pow(env, 4); // try one at a time
env = pow(env, 8);
env = pow(env, 16);

sin
Fourier analysis tells us tones can be formed out of sine
waves.
The sin() function has a repetition period of twopi:
sample p = phasor(&s->osc, 440);
sample tone = sin(twopi * p);

Multiplying by an integer gives harmonics:
sample tone = sin(1 * twopi * p); // fundamental
sample tone = sin(2 * twopi * p); // octave
sample tone = sin(3 * twopi * p); // octave+fifth
sample tone = sin(4 * twopi * p); // two octaves

mix
Tones can be mixed, even varying over time:
sample complex_tone = mix

(sin(1 * twopi * p)
, sin(2 * twopi * p)
, 0.25 // mostly the first tone
);

sample time_varying_tone = mix
(sin(2 * twopi * p)
, sin(3 * twopi * p)
, wrap(2 * bar)
);

Keyword: additive synthesis

tanh
The tanh() function is a soft clipper: the output is always
between -1 and 1, but louder input signals get more
distorted.
sample distorted = tanh(4 * time_varying_tone);

When there is more than one sine wave component, more
complicated sounds result.
The sin() function can also be used for distortion:
sample distorted = sin(4 * time_varying_tone);

Keyword: wave-shaping

kick

Envelopes can be applied to pitch as well as volume.
A simple kick drum is a decaying downwards sine wave
sweep:
sample kick = 1 - wrap(beat);
kick = pow(kick, 8);
kick *= sin(12 * twopi * kick);

Try changing the curve power and frequency multipler.

snare

A simple snare is enveloped noise:
sample snare = 1 - wrap(2 * bar - 0.5);
snare = pow(snare, 16);
snare *= noise();

Subtracting 0.5 from the phase makes it on the off-beat.
Slower beats need a higher power curve to sound similar.

break time

Exit clive: press Ctrl-C in the terminal you launched it
from.
Create a git tag to refer to later:
git tag -a metronome-jamming \

-m "workshop 2022-01-15 time-based synthesis"

Take a break!

feedback processes

git log

The history of your edits is saved in your git repository:
git status
git log --oneline

The messages are automatic, so not informative. To see
what changed, use git show with the hash of the commit,
for example:
git show e02762d

git checkout

You can access branches and tags by name:
git checkout metronome-jamming

You can list branches and tags:
git branch -a
git tag -ln

workshop
Now we will continue from a different branch:
cd ~/code/clive-workshop
git checkout workshop

This is the basis of a short live performance. Here’s the
one I prepared earlier again, this time you should
understand more of the code edits:
https://mathr.co.uk/clive/workshop/
2022-01-15/claude.html
Then
./launch/local-native-sse.sh

https://mathr.co.uk/clive/workshop/2022-01-15/claude.html
https://mathr.co.uk/clive/workshop/2022-01-15/claude.html

biquad highpass
The kick is a bit feeble. Add more bass with a resonant
filter. Use a high-pass filter to preserve the attack.
BIQUAD kickbq; // in struct

sample kkQ = flatq; // resonance
sample kkHz = 60; // pitch
kick = biquad

(highpass(&s->kickbq, kkHz, kkQ) // filter
, kick // input
);

Try changing the Q in 10–100, and the Hz in 20–200.

vcf
Make the snare more interesting: boost mids.
VCF snarevcf[2]; // in struct

sample snQ = flatq; // resonance
sample snHz = 600; // pitch
sn[0] = vcf(&s->snarevcf[0],

snQ * sn[0], snHz, snQ); // filter

Try changing the Q in 5–50, and the Hz in 200–2000.
Remember to increase the volume if you don’t hear any
changes:
sample snare_gain = 1;

samphold
Give the snare a lo-fi feel: quantize in time.
PHASOR crush; // in struct
SAMPHOLD snaresh[2];

sample crush = phasor(&s->crush, 4000);
sn[0] = samphold(&s->snaresh[0], sn[0], crush);
sn[1] = samphold(&s->snaresh[1], sn[1], crush);

Try changing the phasor frequency in 1000–10000. In 4000
* pow(1, cos(twopi * t)) try changing the base from
1 to 2.

if
Make the second snare in each bar repeat conditionally:
sample snare = 1 - wrap(2 * bar + 0.5);
if (bar > 0.75) {

snare = wrap(8 * snare);
}

An else branch is optional, { ... } are only needed for
more than one statement:
if (bar > 0.75) snare = wrap(8 * snare);
else snare = 1 - snare;

?:

The ternary operator can be used in expressions:
snare = wrap((t < 0.75 ? 8 : 6) * snare);
kick = wrap((bar < 0.75 ? 1 : 2) * kick);

Conditionals give 0 and 1, so this could be written:
snare = wrap((8 - 2 * (t < 0.75)) * snare);
kick = wrap((1 + (bar < 0.75)) * kick);

delay feedback

Filters operate on short delays (a few samples). Longer
delays can be used for echoes.
Scroll to around line 130 and change feedback to 1.
Note: usually feedback should be between -1 and 1, but
this example has a dynamic range compressor to prevent
explosions.
Change feedin to 0 to hear the delay recirculating
without any input.

explosions
If feedback is too large, delay line can explode. In such an
emergency, clear the whole memory buffer:
if (s->reloaded) {

memset(s, 0, sizeof(*s));
}

Once you have found and fixed the problem, comment out
to avoid reset again on next save:
if (s->reloaded) {

// memset(s, 0, sizeof(*s));
}

delay time
Scroll to around line 100 to see:
sample ms[2] =

{ (1000 * 60 / s->bpm) *
(wrap(1 * t) < 1 ? 4. / 4 : 1. / 64)

, (1000 * 60 / s->bpm) *
(wrap(2 * t) < 1 ? 4. / 4 : 1. / 48)

};

Change the 4./4 to 3./4 or 2./4.
Change the 3 in the lop() below to 0.1 and make more
changes to the delay factors. Listen carefully.
Change the 0.1 back to 3 and the delay factors to 2./4.

delay time sequencing

Change wrap(1 * t) < 1 to wrap(1 * t) < 0.75.
Change wrap(2 * t) < 1 to wrap(2 * t) < 0.50.
Go back to line 130 or so and change feedin to 0.1 to
restore input to the delay line.

delay line filters

The delay line has a band-pass filter to cut out very low
frequencies and very high frequencies.
Scroll to line 140 or so, and change the hip() 10 to 100
to cut more bass, and change the lop() 10000 to 1000 to
cut more treble.

delay line stereo
This example has two mono delay lines to make a stereo
delay. The delay lines are mixed together with a rotation
matrix, around line 120.
Try changing the angle from twopi / 24 to twopi * t
to make it vary over time.
Try adding a continually changing delay time too, just
before sample del[2] on line 110 or so insert:
ms[0] += 10 * cos(twopi * bar);
ms[1] += 10 * sin(twopi * bar);

preparing for rehearsal

Make edits until it sounds like your ideal start of
performance.
Exit clive with Ctrl-C in the terminal you started it from.

neatening up
Make a note of session-branch name, the latest
session-2022-etc.
git status

Create a new branch name workshop-myname.
git checkout workshop
git checkout -b workshop-myname
git merge --squash session-branch-name
git commit -m "getting ready for rehearsal"

Now the history is short and sweet.

practice performance

git checkout workshop-myname
./launch/local-native-sse.sh

Ctrl-C in the terminal to finish.

	clive workshop
	Introduction
	Install Party
	Digital Audio
	time-based synthesis
	feedback processes

