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The Burning Ship fractal is a non-analytic variation of the Mandelbrot set, formed by taking 
absolute values in the recurrence. Iterating its Jacobian can identify the period of attracting orbits; 
Newton’s root-finding method locates their mini-ships. Size estimates tell how deep to zoom to find 
the mini-ship or its embedded quasi-Julia set. Pre-periodic Misiurewicz points with repelling 
dynamics are located by Newton’s method. Stretched regions are automatically unskewed by the 
Jacobian, which is also good for colouring images using distance estimation. Perturbation 
techniques cheapen deep zooming. The mathematics can be generalised to other fractal formulas. 
Some artistic zooming techniques and domain colouring methods are also described. 

Burning Ship. Dynamical systems. Fractal art. Numerical algorithms. Perturbation theory. 

 

1. IMAGING THE BURNING SHIP 

1.1 ESCAPE-TIME FRACTALS 

Fractals are mathematical objects exhibiting detail 
at all scales. Escape-time fractals are plotted by 
iterating recurrence relations parameterised by 
pixel coordinates from a seed value until the values 
exceed an escape radius ܴ or until an arbitrary limit 
on iteration count ܰ is reached (this is to ensure 
termination, as some pixels may not escape at all). 
The colour of each pixel is determined by how 
quickly the iterates took to escape. 
 
Define the integer pixel coordinates by ݅, ݆, with the 
centre of the image at ݅௖, ௖݆, then the viewing 
transformation for a region near ܽ௖, ܾ௖ can be 
factored using polar decomposition of its 2 ൈ 2 
matrix (Uhlig 1981) into a uniform scale factor ݏ, a 
rotation ݎ, and a non-uniform stretch ߢ where 
ߢݐ݁݀ ൌ 1: 

ቀ
ܽ
ܾቁ ൌ ቀ

ܽ௖
ܾ௖
ቁ ൅ ߢݎݏ ቆ൬

݅
݆൰ െ ൬

݅௖
௖݆
൰ቇ 

1.2 The Burning Ship 

The most famous escape-time fractal is the 
Mandelbrot set, with the complex-valued 
recurrence relation ݖ௡ାଵ ൌ ௡ଶݖ ൅ ܿ, where ܿ is based 
on the pixel coordinates and ݖ଴ ൌ 0. 

 

Figure 1: The Burning Ship fractal. ܽ ∈ ሾെ2.02,1.18ሿ, ܾ ∈
ሾെ1.8,0.6ሿ 

The Burning Ship fractal defined by Michelitsch & 
Rössler (1992) modifies this formula with the 
addition of absolute values, which makes the 
formula non-analytic (it must be considered as a 
pair of real-valued recurrences): 
௡ାଵݔ ൌ ௡ଶݔ െ ௡ଶݕ ൅ ܽ ௡ାଵݕ ൌ |௡ݕ||௡ݔ|2 ൅ ܾ ଴ݔ ൌ ଴ݕ ൌ 0 
Unlike the Mandelbrot set, the Burning Ship is 
typically plotted with the ܾ axis increasing in the 
downwards direction: this makes the fractal shape 
resemble a ship on fire. 
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1.3 Renormalised iteration count 

Plotting the escape iteration count alone leads to 
images with banded level sets. However, the size 
of the final iterate (the first that escaped beyond ܴ) 
can be used for smooth colouring. The 
renormalised fractional iteration count Vepstas 
(1997) derived for the Mandelbrot set is also valid 
for the Burning Ship as its asymptotic behaviour 
towards infinity is the same: 

ߤ ൌ ݊ ൅ 1 െ ଶ݃݋݈ ቀ݈݃݋ඥݔ௡ଶ ൅  ௡ଶቁݕ

1.4 Screen-space distance estimates 

Approaching the boundary of an escape-time 
fractal, the iteration bands get closer and closer 
together. This happens in such a way that an 
estimate of the distance to the boundary can be 
calculated. The ߤ values of neighbouring pixels 
combined together with Roberts’ cross operator 
gives a number that is smaller than 1 near the 
boundary and greater than 1 far from the boundary, 
which is useful information for colouring images 
with the structure of the fractal: 

݀௜,௝ ൌ
1

ටหߤ௜,௝ െ ௜ାଵ,௝ାଵหߤ
ଶ
൅ หߤ௜,௝ାଵ െ ௜ାଵ,௝หߤ

ଶ
 

1.5 Analytic distance estimates 

The Mandelbrot set has a well-known analytic 
exterior distance estimate based on derivatives. 
“gerrit” (2017) adapted it to the Burning Ship by 
replacing the complex derivatives with a vector-
based norm of the Jacobian matrix (with respect to 
ܽ, ܾ), which I combined with the viewing transform: 

ሺݑ ሻݒ ൌ ሺݔ௡ ߢݎݏ௡ܬ௡ሻݕ

݀௜,௝ ൌ ݀଴
ሺݔ௡ଶ ൅ ௡ଶݔඥ݃݋௡ଶሻ݈ݕ ൅ ௡ଶݕ

ଶݑ√ ൅ ଶݒ
 

Setting ݀଴ ൌ  gives an estimate of the distance to ݏ
the fractal boundary, setting ݀଴ ൌ 1 gives a value 
scaled to screen-space. 
 
The Jacobian is a matrix of derivatives: 

௡ܬ ൌ ൮

௡ݔ߲
߲ܽ

௡ݔ߲
߲ܾ

௡ݕ߲
߲ܽ

௡ݕ߲
߲ܾ

൲ 

The derivatives can be calculated using recurrence 

relations, defining 
డ|௭|

డ௭
ൌ 0݊݃ݏ I set .ݖ݊݃ݏ ൌ 1 to 

avoid some issues with singular ܬ௡ on the negative 
ܽ axis (elsewhere ݖ݊݃ݏ ൌ

௭

|௭|
). 

௡ାଵݔ߲
߲ܽ

ൌ ௡ݔ2
௡ݔ߲
߲ܽ

െ ௡ݕ2
௡ݕ߲
߲ܽ

൅ 1

௡ାଵݔ߲
߲ܾ

ൌ ௡ݔ2
௡ݔ߲
߲ܾ

െ ௡ݕ2
௡ݕ߲
߲ܾ

௡ାଵݕ߲
߲ܽ

ൌ ௡ݕ݊݃ݏ|௡ݔ|2
௡ݕ߲
߲ܽ

൅ ௡ݔ݊݃ݏ2
௡ݔ߲
߲ܽ

|௡ݕ|

௡ାଵݕ߲
߲ܾ

ൌ ௡ݕ݊݃ݏ|௡ݔ|2
௡ݕ߲
߲ܾ

൅ ௡ݔ݊݃ݏ2
௡ݔ߲
߲ܾ

|௡ݕ| ൅ 1

0 ൌ
଴ݔ߲
߲ܽ

ൌ
଴ݔ߲
߲ܾ

ൌ
଴ݕ߲
߲ܽ

ൌ
଴ݕ߲
߲ܾ

 

Whether to use screen-space or analytic distance 
estimates is an aesthetic choice: different locations 
may expose different strengths and weaknesses. 
Computationally, analytic distance estimation may 
seem more costly due to the extra Jacobian 
calculations, however it might need a lower super-
sampling ratio for a high quality image. 

2. FEATURES OF INTEREST 

2.1 Mini-ships 

The Burning Ship fractal contains mini-ships, which 
resemble smaller copies of the whole. Borrowing 
terminology from Mandelbrot set literature, the 
nucleus of the mini-ship is an attracting periodic 
point ሺܽ, ܾሻ, such that ݔ௣ ൌ ௣ݕ ൌ 0 for some ݌ ൐ 0. 
The smallest such ݌ is called the period of the mini-
ship. 

2.1.1. Finding periods 
An algorithm to find the lowest period of a mini-
Mandelbrot set in a region by iterating the corners 
of a polygon is described by Munafo (2008) but this 
cannot be applied to the Burning Ship without 
extensive modifications because of the non-analytic 
folding by the absolute values in the Burning Ship 
formula. 
 
An alternative method based on a technique I 
learnt from “knighty” (2017) is to iterate the centre 
of the region under along with its Jacobian (with 
respect to ሺܽ, ܾሻ) and detect the first period ݌ when: 

ฬቚ൫ܬ௣ߢݎݏ൯
ିଵ
ሺݔ௣ ௣ሻቚฬݕ ൏ 1 

This is similar to iterating an implicitly-defined 
ellipse instead of a polygon. 

2.1.2. Finding mini-ships 
Newton’s root-finding method in one complex 
variable is a standard technique for finding periodic 
points in the Mandelbrot set. I applied the less well-
known multidimensional version to the Burning 
Ship. 
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Given the period ݌ of a mini-ship, and an 
approximation to its nucleus ሺܽ଴, ܾ଴ሻ, one can use 
the method to solve for ሺܽ, ܾሻ such that ݔ௣ ൌ ௣ݕ ൌ 0. 
Multidimensional Newton’s method uses the 
Jacobian to refine a solution using an implicit 
recurrence relation: 
 

௣ܬ ቀ
ܽ௠ାଵ െ ܽ௠
ܾ௠ାଵ െ ܾ௠

ቁ ൌ െቀ
௣ݔ
 ௣ቁݕ

 
Here ܬ௣ and ൫ݔ௣, ,௣൯ are evaluated using ሺܽ௠ݕ ܾ௠ሻ at 
each step of Newton’s method. 

2.1.3. The size of mini-ships 
I adapted the Mandelbrot size estimate presented 
by Hunt & Ott (1997) to the Burning Ship with minor 
adjustments, using Jacobian matrices (this time 
with respect to ሺݔ, ,ሻ instead of ሺܽݕ ܾሻ) to replace 
the complex derivatives. The partial derivative 
recurrences are: 
 

௡ାଵݔ߲
ଵݔ߲

ൌ ௡ݔ2
௡ݔ߲
ଵݔ߲

െ ௡ݕ2
௡ݕ߲
ଵݔ߲
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ൌ ௡ݔ2
௡ݔ߲
ଵݕ߲

െ ௡ݕ2
௡ݕ߲
ଵݕ߲

௡ାଵݕ߲
ଵݔ߲

ൌ ௡ݕ݊݃ݏ|௡ݔ|2
௡ݕ߲
ଵݔ߲

൅ ௡ݔ݊݃ݏ2
௡ݔ߲
ଵݔ߲

|௡ݕ|

௡ାଵݕ߲
ଵݕ߲

ൌ ௡ݕ݊݃ݏ|௡ݔ|2
௡ݕ߲
ଵݕ߲

൅ ௡ݔ݊݃ݏ2
௡ݔ߲
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1 ൌ
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ଵݔ߲

ൌ
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ൌ
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and the resulting size estimate ݏெ evaluated at a 
nucleus of period ݌ is: 
 

௡ܮ ൌ

ۉ

ۈ
ۇ
௡ݔ߲
ଵݔ߲

௡ݔ߲
ଵݕ߲

௡ݕ߲
ଵݔ߲

௡ݕ߲
یଵݕ߲

ۋ
ۊ

ߚ ൌ෍ܮ௡ିଵ
௣ିଵ

௡ୀଵ

ܵ ൌ ௣ଶܮߚ  

ெݏ ൌ
1

ඥ|݀݁ܵݐ|
 

2.1.4. Examples 
The largest ship has period 1 and nucleus at ሺ0,0ሻ. 
Its size is 0.143. The largest mini-ship on the 
negative ܽ axis has period 3 and nucleus at 
ሺെ1.7549,0ሻ. Its size is 0.00865. The largest mini-
ship on the top right of the main ship has period 3 
and nucleus at ሺ0.87744,െ1.5198ሻ. Its size is 
0.00941. 

2.2 Misiurewicz points 

In the Mandelbrot set, pre-periodic Misiurewicz 
points with repelling dynamics are found at the tips 
of filaments and the centres of spirals, and also 
other places. In the Burning Ship, they occur in 
similar locations. 

2.2.1. Finding Misiurewicz points 
Like strictly periodic points, Misiurewicz points can 
be found using Newton’s method for root finding 
when given the pre-period ݍ and period ݌, this time 
solving: 

௤ା௣ݔ ൌ ௤ݔ ௤ା௣ݕ ൌ  ௤ݕ
with the iteration: 

൫ܬ௤ା௣ െ ௤൯ܬ ቀ
ܽ௠ାଵ െ ܽ௠
ܾ௠ାଵ െ ܾ௠

ቁ ൌ െቆቀ
௤ା௣ݔ
௤ା௣ቁݕ െ ቀ

௤ݔ
 ௤ቁቇݕ

2.2.2. The multiplier of Misiurewicz points 
In the Mandelbrot set, the multiplier of a 
Misiurewicz point is the complex derivative of its 
periodic cycle. This provides a scale factor for the 
asymptotic self-similarity of the Mandelbrot set near 
the Misiurewicz point. 
 
In the Burning Ship, the derivative is replaced by a 
Jacobian matrix (with respect to ሺݔ,  ሻ), and theݕ
multiplier is then: 

݉ ൌ

ۉ

ۈ
ۇ

௤ା௣ݔ߲
௤ݔ߲

௤ା௣ݔ߲
௤ݕ߲

௤ା௣ݕ߲
௤ݔ߲

௤ା௣ݕ߲
௤ݕ߲ ی

ۋ
ۊ

 

 

A similarity scale factor is then ඥ|݀݁݉ݐ|; rotation 
and non-uniform stretch can be extracted using 
polar decomposition. 

2.2.3. Examples 
ሺെ2,0ሻ has pre-period 2, period 1, and multiplier 

ቀ4 0
0 4

ቁ. Zooming in by a factor of 4 gives a similar 

image. 
 
ሺ0, െ1ሻ has pre-period 2, period 2, and multiplier 

ቀ 4 4
െ4 4

ቁ. Zooming in by a factor of 4√2 with a 

rotation of 45 degrees gives a similar image, 
though this is not visible with most colouring 
algorithms as the point is inside the main bulk of 
the ship shape. 
 
ሺ0.82443,െ1.6657ሻ has pre-period 3, period 1, and 

multiplier ቀ2.5412 െ2.1617
2.1617 2.5412

ቁ. Zooming in by a 

factor of 3.3362 with a rotation of 40.387 degrees 
gives a similar image, though in this case the 
images are noticeably stretched. Setting ߢ to the 
optimal skew matrix for a nearby escaping point (as 
defined in the following section) enhances the 
similarity. 
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2.3 Unskewing stretched areas 

Images of the Mandelbrot set are typically rendered 
with a 1: 1 pixel aspect ratio. However, some 
regions of the Burning Ship look rather stretched 
out when visualised this way, so a compensating 
reverse stretch matrix ߢ can be applied to the 
parameter values before iteration. 
 
Using the matrix ߚ as defined in the mini-ship size 
estimate, the optimal skewing matrix for a region 
around a mini-ship is ߢ ൌ ^ଵିߚ , where the hat 
indicates normalisation such that |݀݁ߢݐ| ൌ 1. 
 
For regions where it is too hard to find a mini-ship, 
because it is already too stretched to navigate 
coherently, a skew matrix can be calculated from 
the Jacobian (with respect to ܽ, ܾ) of a nearby point 
that escapes: ߢ ൌ ^௡ିଵܬ . 

 

 

Figure 2: Comparison of identity transformation and 
optimal skew transformation.  

 

 
 

 
 

 
 

 
 

 
 

 
 

 

Figure 3: Embedded Julia sets in the filaments surrounding a mini-ship. 
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2.4 Embedded Julia sets 

Embedded Julia sets in the Mandelbrot set are an 
interesting phenomenon, wherein zooming around 
half way between one mini and another, deeper, 
mini reveals a structure in the filaments that 
resembles a Julia set from the inner location 
relative to the outer mini (Jung 2018). Julia sets are 
related to the Mandelbrot set by setting ݖ଴ based 
on the coordinates of each pixel, this time setting ܿ 
to a constant for the whole image. 
 
A similar thing happens in the Burning Ship. The 
embedded quasi-Julia set between an outer mini-
ship of size ݏை and an inner mini-ship of size ݏூ has 
a size ݏ௃ approximately ݏ௃ ൌ ඥݏைݏூ. If only the inner 
size is known, a rough estimate for the size of the 

embedded Julia set can be found by ݏ௃ ൌ ூݏ

య
ర. 

3. DEEP ZOOM RENDERING 

3.1 Perturbation 

Martin’s SuperFractalThing popularised 
perturbation techniques for the Mandelbrot set 
(2013). With deep zooming one needs higher 
precision numbers, calculations with which take 
more time. The perturbation technique is to iterate 
a single high precision reference orbit, along with 
low precision deltas for each pixel. Using exact 
algebra with the unevaluated sums, most of the 
“large” values fall out, which allows the “small” 
deltas to be updated without catastrophic loss of 
significance. 
 
“laser blaster” (2014) constructed a case analysis 
for evaluating |ܺ ൅ |ݔ െ |ܺ| without losing precision 
when |ܺ| ≫ ܺ ,naïvely) |ݔ| ൅ ݔ ൎ ܺ when only a few 
significant digits are available, so the evaluation 
would always give 0): 
 

,ሺܺݏܾ݂݂ܽ݅݀ ሻݔ ൌ ൞

ݔ ܺ ൒ 0 ∧ ܺ ൅ ݔ ൒ 0
െሺ2ܺ ൅ ሻݔ ܺ ൒ 0 ∧ ܺ ൅ ݔ ൏ 0
2ܺ ൅ ݔ ܺ ൏ 0 ∧ ܺ ൅ ݔ ൐ 0
െݔ ܺ ൏ 0 ∧ ܺ ൅ ݔ ൑ 0

 

 
Then the perturbed iterations ሺܽ, ܾ, ,ݔ  ሻ for theݕ
Burning Ship with reference ሺܣ, ,ܤ ܺ, ܻሻ are: 
 

௡ାଵݔ ൌ 2ܺ௡ݔ௡ ൅ ௡ଶݔ െ 2 ௡ܻݕ௡ െ ௡ଶݕ ൅ ܽ
௡ାଵݕ ൌ ሺܺ௡ݏ2݂݂ܾ݀݅ܽ ௡ܻ, ܺ௡ݕ௡ ൅ ௡ݔ ௡ܻ ൅ ௡ሻݕ௡ݔ ൅ ܾ

 

 
If the reference escapes early, one needs to 
choose another reference and recalculate the 
remaining pixels. 
 
Perturbation does not need to be applied to the 
Jacobian for distance estimation as there are no 
issues of cancellation here. 

3.2 Perturbation glitches 

It can be that the dynamics of some pixels are 
sufficiently different to the dynamics of the 
reference, such that there is precision loss and 
visible glitches. “Pauldelbrot” (2014) constructed a 
criterion to detect this case in the Mandelbrot set, 
the same principle applies to the Burning Ship: if 
ሺܺ௡ ൅ ௡ሻଶݔ ൅ ሺ ௡ܻ ൅ ௡ሻଶݕ ൏ 10ିଷሺܺ௡ଶ ൅ ௡ܻ

ଶሻ then a 
problem may occur. In this case a good candidate 
new reference may be in a pixel which minimises 
ሺܺ௡ ൅ ௡ሻଶݔ ൅ ሺ ௡ܻ ൅  ௡ሻଶ, at the iteration number atݕ
which the glitch is detected. This is based on the 
observation that glitches tend to surround mini-
ships with the glitch occurring at an iteration which 
is a multiple of the period. 

3.3 Series approximation 

Martin’s SuperFractalThing, as well as using 
perturbation, also uses series approximation 
techniques to speed up Mandelbrot set graphical 
rendering. However, when applied to the Burning 
Ship, special care must be taken if the image of the 
region to be rendered ever crosses an axis, 
because then the non-analytic absolute value part 
of the Burning Ship formula will fold it into multiple 
parts on the next iteration. No single series can 
account for more than one of these parts, so the 
region must be split along the fold lines, with a 
separate series needed for each. More research is 
needed to see if the complexity of implementation 
is worth it. 

4. GENERALISATIONS 

The degree ݀ ∈ ܰ Burning Ship generalisation 
modifies the iteration recurrence to: 

௡ାଵݔ ൅ ௡ାଵݕ݅ ൌ ሺ|ݔ௡| ൅ ௡|ሻௗݕ|݅ ൅ ሺܽ ൅ ܾ݅ሻ 
Here ݅ ൌ √െ1 is the imaginary unit. The normalised 
iteration count becomes: 

ߤ ൌ ݊ ൅ 1 െ ௗ݃݋݈ ቀ݈݃݋ඥݔ௡ଶ ൅  ௡ଶቁݕ

where ݀ is the highest non-linear power in the 
iteration formula, corresponding to behaviour near 
infinity. The derivatives in the equations for the 
Jacobian recurrences can be calculated for higher 
powers by straightforward algebraic manipulation. 
The size estimate for mini-sets needs to be 
changed to: 

ெݏ ൌ
1

ඥ|݀݁ߚݐ|ටห݀݁ܮݐ௣ห

ௗ
ሺௗିଵሻ

 

where ݀ is the lowest non-linear power in the 
formula, corresponding to behaviour near 0. The 
rough embedded Julia set size estimate becomes 
 

௃ݏ ൌ ூݏ

ሺௗାଵሻሺௗିଵሻ
ௗమ  
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The more accurate embedded Julia set size 
estimate is a weighted geometric mean: 

௃ݏ ൌ ටݏைݏூ
ௗିଵ೏

 

 
The techniques in this paper are not limited to the 
Burning Ship. They also work for other fractal 
formulas (for example, “Celtic”, “Buffalo” or 
“Mandelbar”) with straightforward algebraic 
manipulation which I have automated by a 
computer algebra system. 

5. ARTISTIC TECHNIQUES 

5.1 Sculptural zooming 

The path taken when zooming into fractals such as 
the Mandelbrot set or the Burning Ship determines 
the structures visible in the image at different zoom 
depths. By making choices about where to zoom, a 
fractal artist can sculpt desired shapes from the 
mathematical structure. 

5.1.1. Shape stacking 

 

Figure 4: Shape stacking. 

Shape stacking can be achieved by zooming close 
to a mini-ship in the outer decorations of a mini-
ship in the outer decorations of a mini-ship (and so 
on). The shapes from each embedded Julia set 
passed through on the zoom path, stack up in 
concentric period-doubling rings. 

5.1.2. Layer stacking 

 

Figure 5: Layer stacking. 

Layer stacking can be achieved by zooming close 
to a mini-ship in the inner decorations of a mini-ship 
in the inner decorations of a mini-ship (and so on). 
Mapping the logarithm of the distance estimate into 
a linear colour palette can give aesthetically 
pleasing effects, particularly for these dense deep 
zooms (Runmo 2017). 

5.1.3. Julia morphing 
Julia morphing can be achieved by zooming close 
to a feature of an embedded Julia set deeper to its 
“echo”, where the feature is wrapped twice around 
the centre. “Going off centre” at this point close to a 
feature of this new structure, repeatedly alternating 
with zooming in a regular procedure, can lead to 
diverse shapes. 

 

Figure 6: Julia morphing. 

5.2 Structural colouring 

5.2.1. Atom domains 

 

Figure 7: Atom domain colouring variation. 

Atom domain colouring as defined by Peitgen & 
Richter (1986, pp61-62) for the Mandelbrot set is to 
colour points based on the iteration count ݉ at 
which ݔ௠ଶ ൅ ௠ଶݕ  is minimised. For points that escape 
to infinity this is well-defined, and even in the 
interior it seems stable, revealing previously 
unseen structures. Atom domains surround mini-
ships of the corresponding period, but are usually 
significantly larger, which can aid in navigation. 
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5.2.2. Misiurewicz domains 

 

Figure 8: Misiurewicz domain colouring variation. 

I extended the atom domain idea to Misiurewicz 
domain colourings. For a period ݌ this is to colour 
points based on the iteration count ݍ at which 

൫ݔ௤ା௣ െ ௤൯ݔ
ଶ
൅ ൫ݕ௤ା௣ െ ௤൯ݕ

ଶ
 is minimised, well-

defined for exterior points that escape to infinity. 
The domains surround Misiurewicz points of pre-
period ݍ and period ݌. The best periods to visualise 
depend on the location within the fractal. 

Phantom domains 
Unfortunately some domains seem to be 
phantoms, with neither mini-ship nor Misiurewicz 
boundary point at their centre. This may be down to 
the lack of analyticity, as this problem doesn’t seem 
to occur in the Mandelbrot set. 

6. CONCLUSION 

The Burning Ship and other fractal formulas are not 
as well-behaved as the Mandelbrot set. The latter’s 
dynamics of one complex variable have been 
studied in great depth, with much useful machinery 
like external rays. Non-analytic formulas do still 
admit some artistically useful algorithms: one can 
let the computer do the uninteresting work of 
finding precise coordinates, zoom depths and skew 
matrices, leaving more free time for higher-level 
artistic choices 
 
My experimental work-in-progress implementation 
et with a fractal formula compiler and runtime 
(running on Linux systems only), is available at 
https://mathr.co.uk/et/. 
 
A fixed collection of formulas is compiled using et 
into my fork of Kalle’s Fraktaler 2 (for Windows 
systems, including WINE), which is available at 
https://mathr.co.uk/kf/kf.html. 
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