
Kalles Fraktaler 2 +
As the orginal upstream author Karl Runmo says:

Want to create DEEP Mandelbrot fractals 100 times faster than the commercial programs,
for FREE? One hour or one minute? Three months or one day? Try Kalles Fraktaler!

I (Claude Heiland-Allen) forked the code and swapped out the custom arbitrary precision floating point
code for highly optimized libraries, making it even faster. Cross-compiled to Windows from Linux
MINGW64. Now with many other enhancements (mostly speed optimisations and bugfixes).

Original upstream version:

• http://www.chillheimer.de/kallesfraktaler/

This version:

• https://mathr.co.uk/kf/kf.html

Feedback:

• https://fractalforums.org/kalles-fraktaler/15 current forum
• http://www.fractalforums.com/kalles-fraktaler/ legacy forum (read only)
• mailto:claude@mathr.co.uk?subject=Kalles%20Fraktaler%202 personal mail

Known Bugs
• Windows Defender sometimes reports that KF contains malware (false positive, I hope - I check

with virustotal.com and all seems fine) (possibly due to screenshots for crosshair window, some
code also moves the mouse cursor)

• out of memory conditions cause crashes (for example, if bitmap creation fails - also need to check
huge sizes) (reported by gerrit)

• resizing window during examine zoom sequence auto solve glitches leads to corruption of the zoom
sequence data

• “stop autosolve” during examine zoom sequence fails and corrupts zoom sequence
• minimizing window during zoom sequence rendering corrupts image (saves blank image or repeated

frame) (reported by gerrit and CFJH)
• resizing window by dragging frame corner in WINE on Linux sometimes crashes
• with “reuse reference”, corrupt image at transition between number types (eg e600) (reported by

CFJH) - workaround is to render in segments or force the number type higher (“use long double
always”, “use floatexp always”)

• crash when zooming too quickly near interior black regions (reported by Foxxie) “usually near the
elephant valley area or seahorse valley area of minibrots, happens worse the faster you zoom, usually
if you try to zoom at the skinniest part very quickly”

• on special locations kf renders endless references and comes to no end (reported by CFJH)
• “resume zoom sequence” assumes “zoom size” is an integer
• “resume zoom sequence” re-uses last set zoom count limit
• “examine zoom sequence” doesn’t save corrected PNG images during glitch solve
• speckles when rendering zoom out sequence
• black regions when rendering zoom out sequence (maximum iterations are reduced too much before

spirals appear in next frame) (reported by gerrit)
• there is still a race conditions in guessing (doesn’t wait for previous progressive interlacing pass to

be 100% done before the next one starts)
• newton-raphson zooming to minibrot doesn’t increase maxiters enough sometimes
• newton-raphson zoom preset depths are bad for formulas with power other than 2
• bad combinations of skew, distance estimation, and series approximation
• scaled (long) double yr,yi can underflow to 0, eventually causing derivatives to be too small and de

overflows to infinity -> blank screen: workaround is to force long double or floatexp as appropriate
• auto skew (escape) button doesn’t work well with some formulas (eg SimonBrot)
• kf-tile.exe doesn’t support skew yet
• status bar reference count doesn’t reset when zooming before it is “Done”
• help button in file browser does nothing

1

http://www.chillheimer.de/kallesfraktaler/
https://mathr.co.uk/kf/kf.html
https://fractalforums.org/kalles-fraktaler/15
http://www.fractalforums.com/kalles-fraktaler/
mailto:claude@mathr.co.uk?subject=Kalles%20Fraktaler%202

• opencl support is very broken, proof of concept only
• may be difficult to build the source at the moment (out of date instructions for Windows, dependency

on ‘et’, . . .)

Differences From Upstream 2.11.1
Incompatible Changes

• In versions 2.13.1 through 2.13.4 inclusive the interior is white. In 2.13.5 and above it
is user-settable, defaulting to black, Parameter files made with earlier 2.13 versions should be
modified to explicitly set a white interior colour. In earlier versions (including upstream 2.11.1)
the interior is black with no way of changing it.

• In version kf-2.12.10 only the jitter is “Gaussian” with no way of changing the shape. In
2.12.11 and above, the shape can be changed, and the default is now “uniform”. Earlier versions
(including upstream 2.11.1) do not support jitter at all. To get the same results as 2.12.10 you
must enable the Gaussian jitter checkbox and set the jitter scale box to 1.

• In version kf-2.12.1 and above, DE colouring method #5 is once again backwards compatible
with upstream 2.11.1. Parameter files made with 2.11.1+gmp.DATE versions should be modified
to use Distance (Square Root) colouring method #8.

• In version kf-2.11.1+gmp.20170822 only, DE colouring method #5 used log instead of sqrt for
a more perceptually linear effect. In later versions, this log scaling is achieved with a new colouring
method #7, while the DE colouring method #5 reverts to sqrt as before. The new colouring method
ID allows old 2.11.1+gmp.DATE parameter files to be loaded into current versions and display as
intended. Any parameter files saved with the new Distance (Logarithm) colouring method will not
display as intended in older versions. Parameter files using Distance colouring method saved with
this particular version should be modified to use Distance (Logarithm) in the latest version.

• multiple finite difference methods for distance colouring (only the default Traditional is available
in 2.11.1).

• analytic DE colouring with derivatives (not available in 2.12.x or earlier).

Other Changes

• Makefile build system using MINGW to cross-compile to Windows from Linux
• uses GMP for arbitrary precision floating point instead of custom code
• uses Boost wrapper around GMP floats for higher-level coding
• use installed JPEG library, instead of bundled sources
• long double support built into EXE (no separate DLL needed)
• virtually unlimited precision (memory needed for precise numbers is an issue)
• threaded calculations reimplemented with barriers to avoid WINE slowdown
• workaround for WINE issue artificially limiting image size (up to 2GiB now)
• bugfix: inflection performance issue (was converting number types needlessly)
• bugfix: cross-hair resource issue (reported and fixed by Kalles Fraktaler)
• miscellaneous code cleanups (-fpermissive fixes, const fixes, delete[] fixes, 64bit compatibility

paranoia)
• formula inner loops generated at compile time from high level specification XML using XSLT and a

preprocessor implemented in Haskell
• optimized some reference calculations by floating temporaries out of loops
• XML preprocessor optimizes more reference calculations in the same way
• optimized Newton-Raphson zooming by using lower-level GMP calls
• very experimental and broken OpenCL using CLEW (still disabled at build time)
• save images to PNG format as well as JPEG
• colouring uses floating point internally (fewer quantisation steps)
• dithering at end of colouring to improve perceptual quality (reduced banding)
• “glitch low tolerance” checkbox that can be enabled to detect glitches more aggressively (disabled

by default, enable it if you get undetected glitches)
• updated program icon with transparent background and large version
• parameter data is saved as comment in image files (both PNG and JPEG)

2

• preferences (rendering settings not related to location) save and load (.kfs files and PNG/JPEG
comments too)

• command line arguments to load settings and/or location
• command line arguments to render and save PNG/JPEG/KFB Map before quiting
• see change log below for more. . .

Change Log
• kf-2.13.11 (2018-10-29)

– bugfix: fix translation with reuse reference enabled (reported by Dinkydau)
– bugfix: don’t add additional references if autosolve is disabled
– bugfix: ghc-8.6 compatibility for preprocessor (MonadFail)
– upgrade to libpng 1.6.35

• kf-2.13.10 (2018-10-23)

– bugfix: corrupt image at transition between number types (eg near e600) (reported by CFJH)
– bugfix: changing “threads per CPU” during rendering crashes (reported by CFJH) (the menu

is now disabled during rendering)
– bugfix: set approx terms to 3 for other than power 2 Mandelbrot
– bugfix: fix floatexp toString for negative values and 0
– internal: update to et-kf API version 5

• kf-2.13.9 (2018-09-06)

– new feature: auto skew without miniset: new button in Newton-Raphson zooming dialog,
“Auto Skew (Escape)”, that skews at the center pixels (algorithm suggested by gerrit)

– bugfix: set window title on parameter drag and drop (reported by gerrit)
– bugfix: reading PNG metadata works even if it is moved after the image data chunks and has

a miscapitalized “Comment” keyword
– bugfix: fix Mandelbar derivative calculations for ADE (reported by gerrit)
– bugfix: fix 4th False Quasi formulas Newton-Raphson zooming

• kf-2.13.8 (2018-08-28)

– new feature: auto skew (via Newton-Raphson zooming dialog)
– new feature: show/hide crosshair window (suggested by gerrit and others)
– new feature: quality presets (“fast” but inaccurate, “best” but slow)
– new feature: page up / page down keyboard shortcuts to zoom in / out
– new feature: drag-and-drop parameter files from the file manager to the main window to open

them
– new feature: drag-and-drop palette files from the file manager to the color dialog window to

open them
– new feature: CLI prints total remaining pixels (suggested by gerrit)
– bugfix: suppress error dialogs when loading metadata from TIFF
– bugfix: remove obsolete .ini stuff that was overriding default settings
– bugfix: enabled “no reuse center” by default (without it zoom out sequence sometimes glitches)
– major documentation improvements
– new dependency: GLM 0.9.9.0

• kf-2.13.7 (2018-08-14)

– export to uncompressed TIFF images (faster than PNG, but larger) (suggested by gerrit)
– nicer default palette
– upgrade to Boost 1.68.0
– upgrade to MPFR 4.0.1-p13

• kf-2.13.6 (2018-08-02)

– fix for “a single dot appears in the middle of a mini” (reported by gerrit)
– fix for “zooming out saves Zoom 0 in KFR parameter file” (reported by CFJH)
– “open map” function (file menu) workflow: open KFR, ESC to abort, open KFB, adjust

colours, save image (ignoring the warning about a KFB map existing with the same name)

3

• kf-2.13.5 (2018-06-26)

– colouring is parallelized for speedup when multiple cores are available
– only sort pixel indices in interactive mode (speeds up batch mode)
– palette loading fixed to load all colouring data
– interior colour can be set now, defaults to black
– upgrade to GSL 2.5

• kf-2.13.4 (2018-06-21)

– derivative computations can be switched off in the iterations dialog (increases rendering speed,
breaks analytic DE colouring)

• kf-2.12.13.1 (2018-06-04)

– fix severe performance bug introduced in previous version
– upgrade to Boost 1.67.0
– upgrade to MPFR 4.0.1-p6

• kf-2.12.13 (2018-05-15)

– fix crasher bug relating to series approximation memory allocation (reported by gerrit)

• kf-2.13.3 (2018-05-08)

– Newton-Raphson zooming precision loss bug fix (reported by gerrit)
– Newton-Raphson zooming for Mandelbrot powers 6 7 8 9 10 (reported by gerrit)
– Newton-Raphson zooming size estimate fixed for more formulas (now correctly uses smallest

power instead of largest, for renormalization behaviour near zero)
– Mandelbrot power 6 7 8 9 10 analytic distance estimation bug fixes (reported by gerrit)

• kf-2.13.2 (2018-05-01)

– Newton-Raphson zooming for all formulas (using code generated by ‘et’) (no progress reporting
yet, nor convergence detection for early exit)

– Rˆ2 matrix derivatives for all formulas (fixes analytic DE with skew)
– fix image corruption when enabling guessing with analytic DE
– fix assertion failed popup (race condition between parameter changes and colouring during

rendering) (reported by gerrit)

• kf-2.13.1 (2018-03-30)

– added derivative calculations
– known bug: calculated even if not needed for colouring
– known bug: some derivatives are C approximations instead of Rˆ2 matrix
– analytic DE colouring mode
– known bug: DE data not saved to KFB map files
– interior is white instead of black
– known bug: interior colour should be customizable
– series approximation uses Horner’s rule to evaluate polynomials (minor optimisation)
– default settings are best-quality by default

• kf-2.12.12 (2018-03-30)

– Free Software under GNU Affero General Public License, version 3 or greater
– least squares numerical differences (experimental; subject to change)
– Laplacian numerical differences (suggested by gerrit)
– (possibly stratified) tiled settings/parameters generator program
– stratified tiling reassembler GNU Octave script

• kf-2.12.11 (2018-03-12)

– uniform jitter by default (suggested by gerrit)
– Gaussian jitter available as an option
– jitter scale factor setting (suggested by gerrit)
– log verbosity flag for command line rendering
– upgrade to libjpeg6b2 http://jpegclub.org/support/

4

http://jpegclub.org/support/

– fix bug where Ctrl-S would overwrite the wrong file (reported by gerrit)
– fix bug where lines would appear aligned with references (reported by gerrit and CFJH)
– fix “color method and infinite waves are immediately applied” even when colouring is disabled
(reported by gerrit)

• kf-2.12.10 (2018-02-22)

– upgrade to MPFR 4.0.1
– removed some build instructions from README (see the prepare.sh script) (it was too annoying

to have to keep updating everything in two places)
– command line non-interactive mode works without opening a window (suggested by gerrit)
– pixel jitter (dithering of position): set non-zero seed in iterations dialog to enable it, different

seeds give slightly different images which can be stacked later for anti-aliasing as an alternative
to rendering large and downscaling later; helps reduce Moiré grid artifacts at the cost of noise

– “Enable” toggle in colouring dialog: colouring takes long for large images, disable the toggle if
you want to make many changes at once, then click “Apply” or re-enable to see the results
(discussed with gerrit)

• kf-2.12.9.1 (2018-01-24)

– fixed broken “approx low tolerance” checkbox (thanks to Dinkydau)
– fixed NR-zoom dialog to remember custom zoom factor between reopenings (reported by

gerrit)
– fixed initialization of some menu item state on load

• kf-2.12.9 (2018-01-24)

– improved Newton-Raphson zooming dialog, now zooms to a factor between current zoom and
minibrot size (suggested by Dinkydau)

– implemented “scaled long double” iterations for Mandelbrot power 2 and 3, which might speed
up some zooms between e4900 and e9800

– fixed “the maxiterations suddenly resets to some very low value” (reported by gerrit)
– fixed “Newton iterates 100 times before failing”, now fails fast if the C goes outside the target
(reported by gerrit and Dinkydau, fix suggested by knighty)

– fixed “Newton zooms to blank image”, reported by gerrit, fix was to remove a check on the
derivative being huge that was falsely reporting success

– fixed “manual ApproxTerms gets reset to AutoApproxTerms value” (reported by gerrit)
– barrier implementation yields if there are fewer CPUs than threads (fixes very slow Newton-

Raphson zooming and reference calculations on dual-core laptop) (this is the behaviour of
2.12.5 and earlier, but conditional on number of cores)

– upgrade to libpng 1.6.34
– added shell script containing some of the build instructions from the documentation

• kf-2.12.8 (2017-12-22)

– fixed the fix for hang in normalisation (was generating bad images) (reported by gerrit with
bug7.png)

– restore ignoring isolated glitches
– fixed DE spots bug (somehow the reference was being reset to the center of the screen sometimes

without its pixel position being updated) (reported by gerrit)
– fixed bugs with guessing and glitch status (only interpolate when the glitch status of both

neighbours is the same) (caused lines when dragging the view, probably other badness too)
– added logic to prevent too-huge image size being entered via the GUI (settings files are still

not checked. . .)
– clarified store zoom count user interface (reported by CFJH)
– fixed store zoom out for deep zooms (bug reported by gerrit) (the issue was exceptions thrown

by std::stod(), remember to catch them)
– refactor auto iterations (issue reported by gerrit remains unresolved)
– fixed hardcoded count in glitch correction
– use Taylor intervals in ball-period method (code copied from knighty)

• kf-2.12.7 (2017-12-07)

5

– renabled guessing conditional on menu option (was disabled in 2.12.4 as enabling it made some
random speckles, possibly due to a race condition) (requested by Kalles Fraktaler and Fractal
universe)

– added “threads per cpu core” setting
– compiles clean with -Wwrite-strings
– even lower resolution preview for more intensive locations (suggested by Foxxie) (implemented

with Adam7-style interlacing with circular sorting)
– copy (Ctrl-X) and paste (Ctrl-V) parameters from the system clipboard
– fixed hang crash bug when normalizing smooth iteration values
– use interval arithmetic ball-period method instead of box-period (speeds up Newton-Raphson

zooming a bit) (idea from knighty and gerrit)

• kf-2.12.6 (2017-11-24)

– fix central differences (reported by gerrit)
– fix insufficient precision in Zoom: saved in .kfr (reported by CFJH)
– option to render zoom out sequence without saving KFB maps (suggested by CFJH)
– option to stop rendering zoom out sequence after a certain number of frames (suggested by

CFJH)
– resume zoom sequence works without KFB maps saved every frame (still needs a “last.kfb”,

this is saved automatically when needed)
– barrier no longer yields (fixes priority inversion on heavily loaded systems) (reported by gerrit)
– switch from GMP mpf_t to MPFR (fixes some blank images on load, also some Newton-

Raphson zoom failures - bug involved incorrect normalization) (reported by Kalles Fraktaler
and gerrit)

• kf-2.12.5 (2017-11-02)

– preferences (rendering settings not related to location) save and load (.kfs files and PNG/JPEG
comments too)

– command line arguments to load settings and/or location
– command line arguments to render and save PNG/JPEG/KFB Map before quiting
– auto-added new references recalculate only all glitched pixels (in earlier versions it would

recalculate all pixels with same integer iteration count, which may or may not have been
glitched, and may have missed some glitches)

– glitch correction now uses glitch flag instead of just iteration count (this ensures the reference
is added in a really glitched pixel, so at least one pixel will be fixed by each reference, ensuring
termination with a finite number of references)

– fix bugs with references when calculating their own pixels
– fix off-by-one when references fix their own pixels (reported by gerrit)
– single pixel glitches are no longer fixed by copying neighbour
– fixed glitch at image boundary correction
– fixed memory leak in glitch correction
– fixed horizontal line corruption in examine zoom sequence glitch correction (reported by Fractal

universe)
– fixed “Mandelbar Celtic” formula (reported by Kalles Fraktaler)
– fixed “Mandelbar” formula (reported by Foxxie)
– fixed “Burning Ship Power 4” formula (reported by Foxxie)
– fixed complex formulas reference precision problems (reported by Foxxie)
– fix for auto-iterations (now respects GUI) (reported by Foxxie)
– fix for crash selecting invalid power (reported by Foxxie)
– fix for gigantic zoom value bug in Newton zooming (reported by Foxxie and gerrit)
– added “no reuse center” option to prevent rectangle pasting (suggested by quaz0r)
– fix for signed integer overflow reports negative percentage in status bar when the number of

iterations is large (reported by Foxxie and another)
– fix for confusing PNG save options dialog called “JPEG properties”
– major code refactoring into multiple files for ease of maintenance
– delete no-longer-used single-threaded Newton-Raphson zooming code

• kf-2.12.4 (2017-10-06)

6

– “glitch low tolerance” checkbox that can be enabled to detect glitches more aggressively
(enabling it allows “Olbaid-ST-023.kfr” to render correctly, but taking 16x longer than with it
disabled) (incorrect render reported by Kalles Fraktaler)

– updated program icon with transparent background and large version, and use it for child
windows too

– long double off-by-one bug fixed (incorrect render reported by CFJH)
– floatexp implementation bug fixes (0.0 was implemented incorrectly) (caused a series approxi-

mation underskipping failure that was reported by Kalles Fraktaler)
– fix distance colouring grid artifacts with small zoom size by disabling “reuse center” when

zoom size is not an integer (reported by gerrit)
– fix some iteration band edge artifacts (with external postprocessing of kfb map files) by

increasing the smooth bailout radius from 100 to 10000 (reported by gerrit)
– ensure added references fix their corresponding pixel (suggested by Pauldelbrot) (prevents loop

in auto solve glitches whereby a reference was repeatedly being added at the same location
without progress being made)

– disabled “guessing” (was causing occasional randomly bright single pixels at low zoom levels,
possibly a race condition?)

– build against an installed libjpeg instead of each time after clean
– fix broken complex formula reference calculations
– fix compilation warnings (now almost clean with -Wall -Wextra)
– compile as C++17 (should also still work as C++11 and C++14)
– delete bitrotten code paths for SetEvent()-based multithreading
– delete unused thread affinity setting code
– parameter data is saved as comment in image files (both PNG and JPEG)
– can load parameters from image file comments (both PNG and JPEG)
– delete obsolete VS build system
– fix “infinite waves” colouring (reported by gerrit)

• kf-2.12.3 (2017-09-25)

– multiple finite difference methods for distance colouring (suggested by gerrit)
– fix bug in examine zoom sequence auto solve glitches (first frame only) (reported by Dinkydau

and Fractal universe)
– raise limit for maximum number of references from 199 to 10000 (default still 69, you can

change it in iterations dialog)
– settable number of references per pass for examine zoom sequence auto solve glitches (default

still 10)

• kf-2.12.2 (2017-09-20)

– PNG image saving support using libpng and zlib;
– JPEG default quality to 100 (was 99);
– colouring uses floating point internally to reduce quantisation steps;
– dithering at end of colouring to improve perceptual quality;
– formula.cpp included in source zip so GHC is not needed unless changing formula code;
– optimized diffabs() code: one test Burning Ship location is 7.5% faster;
– preprocessor optimizes reference calculations by floating temporary variable (re)allocations out

of the inner loops: one test Burning Ship location is 30% faster;

• kf-2.12.1 (2017-09-19)

– simplified version numbering;
– built for 64bit (as before) and 32bit (new);
– documentation improvements;
– fix division by zero assertion failure in File -> Examine zoom sequence;
– fix crash in File -> Examine zoom sequence with only 1 image file;
– adjust distance colour modes for backwards compatibility;

• kf-2.11.1+gmp.20170913

– revert incompatible de log vs sqrt colouring change, instead add a new Distance (Logarithm)
colouring method #7;

7

– documentation improvements;
– limit maximum series approximation terms to 60 to try to fix overskipping with large images

• kf-2.11.1+gmp.20170822

– bugfix preprocessor for abs() formulas
– de colouring with log instead of sqrt

• kf-2.11.1+gmp.20170820

– bugfix preprocessor for diffabs() formulas

• kf-2.11.1+gmp.20170714

– disabled OpenCL (be more compatible)

• kf-2.11.1+gmp.20170713

– optimized Newton-Raphson zooming (3x faster in one test)

• kf-2.11.1+gmp.20170711

– workaround for WINE issue artificially limiting image size (now bitmaps up to 2GiB can be
created on all platforms)

• kf-2.11.1+gmp.20170710

– optimized formulas (reference calculation for quadratic Mandlebrot is much faster due to
lower-level calls to gmp)

– very experimental opencl support (mostly broken)
– bugfixes (fix hang loading deep zoom locations, fix newton size in new view radius calculation,

more complete library credits in documentation)
– prune dead code (incomplete jpeg library deleted from source, complete version downloaded

at build time as needed, delete rudimentary openmp support, delete non-performant barrier
variant, delete slower-than-gmp mpfr support, delete custom floating point support)

• kf-2.11.1+gmp.20170703

– formulas now generated at compile time from formula definition XML using XSL stylesheet
– used fixed format floats instead of scientific
– try to hide command prompt window on Windows

• kf-2.11.1+gmp.20170508

– restored threaded reference calculations (reimplemented with barrier() semantics to avoid
single-threaded WINE SetEvent() rendezvous)

• kf-2.11.1+gmp.20170504

– removed threaded reference calculations (too much overhead)
– miscellaneous code cleanups (no need for -fpermissive, const fixes, delete[] fixes, 64bit compati-

bility paranoia)

• kf-2.11.1+gmp.20170406

– fixed precision bugs (easy deep zoom, interactive failure)
– fixed performance bug with inflections
– fixed cross-hair resource bug
– added WINDRES argument to build system
– added more info to about dialog
– include source code with release

• kf-2.11.1+gmp.20170330.1

– fixes a crasher bug in the previous version

• kf-2.11.1+gmp.20170330

– unlimited precision
– separate compilation

8

• kf-2.11.1+gmp.20170313

– long double compiled into exe (no dll)

• kf-2.11.1+gmp.20170307

– kf-2.11.1 + gmp

• kf-2.9.3+gmp.20170307

– kf-2.9.3 + gmp

TODO
User Interface

• crosshair cursor with more contrast (suggested by CFJH)
• show box-region for nr-zoom before clicking (suggested by Foxxie)
• adjust the size of the box via slider or like shift_scroll wheel or something like that? (suggested by

Foxxie for nr-zoom, could also be useful for ctrl-left-click zoom)
• undo history for location data (suggested by TwinDragon)
• undo history for calculation data (suggested by TwinDragon)
• online help within program (suggested by TwinDragon)
• save image now function (without waiting for calculations)
• command line: print total runtime (suggested by gerrit)

Calculations

• increase ref count limit without restarting from scratch
• increase maxiters limit without restarting from scratch
• optimize series approximation and probe point stuff
• work on OpenCL some more (try to get it working)
• calculate series approximation in parallel with reference
• refine minibrot using interior distance estimates
• refine minibrot using boundary shrinking (calculate edges only)

Newton-Raphson Zooming

• add zoom depth offset in addition to zoom depth factor to (eg) zoom closer to minibrot or embedded
Julia

• zoom to Misiurewicz points (custom zoom factor, manual preperiod selection) (suggested by gerrit)
• properly debug huge zoom values from size estimate

Preprocessor

• flatten complex numbers to separate real and imaginary parts
• common subexpression elimination (share results, might be especially useful for large powers of

complex numbers)
• automatically parallelize reference iterations

Colouring

• high bit depth image export (eg 16bit PNG) (suggested by Dinkydau)
• assume sRGB display and gamma-correct downscaling
• load/save palette to/from image
• rework entirely (now: 1024 colours with mandatory interpolation)
• implement Pauldelbrot’s multiwave colouring
• colour cycling (suggested by blob)

Getting The Code
I distribute EXEs bundled together with the corresponding source code.

9

The latest source code is available from my git repository:

git clone https://code.mathr.co.uk/kalles-fraktaler-2.git
cd kalles-fraktaler-2
git checkout master # for Karl's original upstream
git checkout claude # for MINGW build system and bug fixes
git checkout kf-2.12 # for current stable development
git checkout kf-2.13 # for current experimental development
git tag -l # list available release tags

You also need et to generate the formula code for Newton-Raphson zooming:

git clone https://code.mathr.co.uk/et.git

This is outside the scope of this document at the moment, easiest is to download the release bundle
and copy the formula/generated folder from the included src zip. Get in touch for help if you want to
regenerate these sources yourself.

Building On Linux
Build instructions for cross-compiling from GNU/Linux require about 4.2GB of disk space and good
internet download speed (or patience). About 600MB of downloads including the chroot debootstrap step.
To build the PDF manual needs some more packages, adding another 600MB of downloads and 1GB of
space, so I left that optional. If you have recent Debian you can skip the chroot step and install natively.

0. Setup Debian Stretch chroot:

mkdir ./vm
sudo debootstrap stretch ./vm/
sudo mount proc ./vm/proc -t proc
sudo mount sysfs ./vm/sys -t sysfs
sudo cp /etc/hosts ./vm/etc/hosts
sudo chroot ./vm /bin/bash
cd

1. Install dependencies (inside the chroot if you made one):

dpkg --add-architecture i386
apt-get update
apt-get install \
build-essential \
cabal-install \
ghc \
git \
libghc-parsec3-dev \
libtool \
lzip \
m4 \
mingw-w64 \
p7zip \
wine32 \
wine64 \
wine-binfmt \
xsltproc \
zip

apt-get install \
pandoc \
texlive-latex-recommended # optional, for PDF manual

For Ubuntu replace “wine32 wine64 wine-binfmt” with “wine” (but see note about build failures
with some versions).

2. Prepare non-root build user:

10

adduser build
enter and confirm password
su - build
mkdir -p ~/win64/src
mkdir -p ~/win32/src

3. Download Kalles Fraktaler 2 sources:

cd ~/win64/src
git clone https://code.mathr.co.uk/kalles-fraktaler-2.git
cd kalles-fraktaler-2
git checkout kf-2.13
cd ..
cp -avit ~/win32/src kalles-fraktaler-2/

4. Download and build and install 3rd party library sources (inspect the script if you want to be sure
it isn’t doing anything dodgy, or to copy/paste parts if necessary), the script builds both 64bit and
32bit variants:

bash ~/win64/src/kalles-fraktaler-2/prepare.sh

5. Finally, build Kalles Fraktaler 2 + GMP (64bit and 32bit):

cd ~/win64/src
cd kalles-fraktaler-2
make -j 8 SYSTEM=64
make README.pdf # optional, for PDF manual

cd ~/win32/src
cd kalles-fraktaler-2
make -j 8 SYSTEM=32

6. To cut a release bundle, use the script

export VERSION=2.whatever
git tag -s kf-${VERSION}
./release.sh ${VERSION}

Note: build fails on Ubuntu 16.04.3 LTS (xenial):

$ make
x86_64-w64-mingw32-g++ -mfpmath=sse -xc++ -Wno-write-strings -pipe -MMD -g -O3 -ffast-math -I/home/claude/win64/include -DKF_THREADED_REFERENCE_BARRIER -o fraktal_sft/CDecNumber.o -c fraktal_sft/CDecNumber.cpp
In file included from fraktal_sft/CDecNumber.cpp:1:0:
fraktal_sft/CDecNumber.h:5:76: error: ‘decNumber’ was not declared in this scope
typedef boost::multiprecision::number<boost::multiprecision::gmp_float<0>> decNumber;

^
fraktal_sft/CDecNumber.h:5:76: error: template argument 1 is invalid
fraktal_sft/CDecNumber.h:5:62: error: template argument 1 is invalid
typedef boost::multiprecision::number<boost::multiprecision::gmp_float<0>> decNumber;

^
fraktal_sft/CDecNumber.h:5:62: error: template argument 2 is invalid
fraktal_sft/CDecNumber.h:5:32: warning: ‘typedef’ was ignored in this declaration
typedef boost::multiprecision::number<boost::multiprecision::gmp_float<0>> decNumber;

^
...
$ x86_64-w64-mingw32-g++ --version
x86_64-w64-mingw32-g++ (GCC) 5.3.1 20160211
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

The working Debian Stretch has:

$ x86_64-w64-mingw32-g++ --version

11

x86_64-w64-mingw32-g++ (GCC) 6.3.0 20170516
Copyright (C) 2016 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Building on Windows
(note: these instructions are out of date)

Build instructions for compiling on Windows (thanks to knighty!):

0. Remove any old msys2.

1. Downloaded latest version of msys2 (msys2-x86_64-20161025.exe). This is the 64 bit version.
msys2-i686-20161025.exe is the 32 bit version.

2. After running it, it installs msys2. At the end the msys2 shell is launched.

3. In the msys2 shell, invoke pacman:

pacman -Syuu

This have to be done until is says there is nothing to do anymore.

4. Close the msys2 shell:

exit

5. Reopen msys2 shell (from startup menu).

6. Install mingw/gcc 64 bit:

pacman -S mingw-w64-x86_64-toolchain

one can also install 32 bit version by:

pacman -S mingw-w64-i686-toolchain

7. Install Boost

pacman -S mingw-w64-x86_64-boost

from msys shell

8. Close msys2 shell then open “msys2 mingw 64 bit” shell (in order to have all the environment
variables properly set)

9. Change directory to the kalles fraktaler sources (where Makefile resides).

10. Compile

mingw32-make WINDRES=windres

(if this doesn’t work edit the Makefile to replace the line

WINDRES ?= x86_64-w64-mingw32-windres

to

WINDRES ?= windres

and run mingw32-make without arguments)

11. Execute it this way from (msys2 mingw 64 bit) command line:

./fraktal_sft64 # for the claude branch

./kf.exe # for the claude-gmp branch

because it is linked dynamically to some libraries. In order to execute it from the explorer one
needs to copy libgmp-10.dll and libwinpthread-1.dll from msys64/mingw64/bin next to the
generated executable.

12

Legal
Kalles Fraktaler 2 Copyright (C) 2013-2017 Karl Runmo Copyright (C) 2017-2018 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero
General Public License as published by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If
not, see https://www.gnu.org/licenses/.

• this software is based in part on the work of the Independent JPEG Group http://jpegclub.org/
reference/libjpeg-license/

• the TIFF library is used under the libtiff license: https://gitlab.com/libtiff/libtiff/blob/master/
COPYRIGHT

• the PNG library is used under the libpng license http://libpng.org/pub/png/src/libpng-LICENSE.
txt

• the ZLIB library is used under the zlib license http://zlib.net/zlib_license.html
• the GMP library is used under the conditions of the GNU Lesser General Public License version

3 and the GNU General Public License version 2 https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/gpl-2.0.html

• the MPFR library is used under the conditions of the GNU Lesser General Public License version 3
https://www.gnu.org/licenses/lgpl-3.0.en.html

• the GSL library is used under the conditions of the GNU General Public License https://www.gnu.
org/licenses/gpl.html

• the GLM library is used under the conditions of the MIT License https://glm.g-truc.net/copying.txt
• the Boost library is used under the Boost Software License Version 1.0 http://www.boost.org/

LICENSE_1_0.txt
• the CLEW library is used under the Boost Software License Version 1.0 http://www.boost.org/

LICENSE_1_0.txt

NOTE: If you redistribute the binaries or provide access to the binaries as a service, you must also be
prepared to distribute the source corresponding to those binaries. To make this easier for you, the more
recent zips include the source too (though you’ll also need to get the third party library sources).

Acknowledgements
Thanks to:

• K.I.Martin for applying Perturbation and Series Approximation on the Mandelbrot set and generously
sharing the theory and Java source code!

• Pauldelbrot for finding the reliable glitch detection method
• Botond Kósa and knighty for the extensions of Series Approximation
• laser blaster for the Burning ship formula
• stardust4ever for other fractal types
• claude for the Newton-Raphson method
• gerrit for the distance colouring differencing variations
• Dinkydau, Fractal universe, CFJH, Foxxie and others for reporting bugs
• Chillheimer for hosting my program

Claude also thanks Karl for releasing the source code and assigning a Free Software license.

User Manual
Shortcut only:

• Ctrl+B

Toggle skew animation. Enter the number of frames in the popup dialog

13

https://www.gnu.org/licenses/
http://jpegclub.org/reference/libjpeg-license/
http://jpegclub.org/reference/libjpeg-license/
https://gitlab.com/libtiff/libtiff/blob/master/COPYRIGHT
https://gitlab.com/libtiff/libtiff/blob/master/COPYRIGHT
http://libpng.org/pub/png/src/libpng-LICENSE.txt
http://libpng.org/pub/png/src/libpng-LICENSE.txt
http://zlib.net/zlib_license.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/gpl.html
https://www.gnu.org/licenses/gpl.html
https://glm.g-truc.net/copying.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt

Menu items:

File
• Open

Opens the current location from a parameter file (*.kfr) You can also load metadata from images
saved by KF. You can also drag-and-drop files from the file manager on to the main window to
open them as parameters.

• Save

Saves the current location in the current parameter file (*.kfr)

• Save as

Saves the current location in a new parameter file (*.kfr)

• Save as PNG

Saves the current location in a PNG file (*.png)

The location and settings are saved in the file metadata.

• Save as Jpeg

Saves the current location in a jpeg file (*.jpg)

The location and settings are saved in the file metadata.

• Save as TIFF

Saves the current location in a TIFF file (*.tif)

The location and settings are saved in the file metadata.

• Store zoom-out images

Zoom out automatically with the selected Zoom size and store JPEG/PNG/TIFF images and map
file (*.kfb) for each zoom out. The zoom out stops when the depth is lower than 1. The resulting
files can be used by the KeyFramMovie program to create a zoom-in animation.

• Save map

Saves the iteration data in a map file (*.kfb). This file can be used by the KeyFramMovie program.

• Open map

Load the iteration data from map file (*.kfb).

Note: you must set the aspect ratio of the window to match the KFB data before opening the map
file. If you have also saved images, you can do that by loading the image as a settings file.

Note: if you want to continue zooming from the location, you must load the KFR file before opening
the map file. You can also load a saved image as a location file. Location information is not stored
in KFB files.

Note: there is a historical accident whereby the iteration divider is saved in the KFB as an integer,
losing any fractional part and sometimes resetting to 1 on load. A workaround is to load the palette
from a KFP file (which is just a .kfr renamed to .kfp) after opening the map file.

• Examine Zoom sequence

Make sure you store the end location as a kfr file in the same directory as you store the zoom
sequence frames. This function allows you to examine the frames one by one and add references to
remove eventual visible glitch blobs, or choose another pixel as the main reference.

• Resume Zoom sequence

Make sure you store the end location as a kfr file in the same directory as you store the zoom
sequence frames. This function allows you to resume and continue the zoom out sequnce, if it got
interrupted.

14

• Exit

Exit this program

Action
• Zoom size

Set the level of zoom, left mouse click to zoom in, right to zoom out

• Location. . .

Displays the Location dialog where the coordinates for this location is displayed and can be edited.

• Iterations. . .

Displays the Iterations dialog where the maximum iteration number for this location is displayed
and can be edited.

The smooth color transition method is also set here, and the power on the Mandelbrot function.

The fractal types is also set here - Mandelbrot, Burning Ship, Buffalo or Celtic.

This dialog also displays

– Min: The minimum iteration count for a pixel in this location

– Max: The maximum iteration count for a pixel in this location

– Appr: The number of iterations given by Series approximation

– Calculations: The number of calculations performed and also the number of calculations per
second is shown if this dialog is displayed while the image is rendered

• Set colors. . .

Displays the Number of colors dialog where the colors can be edited.

• Reset

Set the location to the start point

• Center cursor

Center the cursor to image’s pattern center

• Find Minibrot

Starts an automatic zoom-in in the image’s pattern center, until a Minibrot is found or if it fails to
find the center.

It’s probably better to use Newton-Raphson zooming if possible.

• Set window size

Set the size of the display window.

• Set image size

Set the size of the internal image size. If this is larger than the window size, an anti-alias effect is
achieved

• Refresh

Render the current location

• Cancel rendering

Cancel the current rendering

• Rotate

Activate rotation, drag to rotate the image

15

• Reset rotation

Clear any rotation

• Show Inflection

Activate or deactivate display of Inflection

• Skew

Opens the Skew dialog which allows to “un-skew” locations that are skewed

• Zoom animation

Turns animation on or off when zooming

Special
• Presets

Set groups of settings to suggested preset values.

– Fast accuracy may be compromised but it’s fast for browsing. Sets ignore isolated glitch
neighbourhood to 4, enables guessing, disables low tolerance for glitches and approximation,
and disables derivatives computation unless analytic DE colouring is currently in use.

– Best highest quality settings for important images, but slow. Sets ignore isolated glitch
neighbourhood to 0 (disabled), disables guessing, enables low tolerance for glitches and
approximation, and enables jitter with a default seed of 1.

• Add reference (Color)

Add a reference and re-calculates the pixels with the same iteration count as the reference. This is
useful if the Auto solve glitches function fails to find and solve glitches in the image

• Set main reference

Let you click the image and select the main reference for the whole image. This can be useful when
glitches appears on top of minibrots when the reference is outside this minibrot. The glitch pattern
disappears from the minibrot if the main reference is selected inside the minibrot.

• Reuse reference

Do not re-calculate the reference for further zooming. This can be useful when during automatic
zoom-out and to test different reference points, but must not be used together with the Auto solve
glitches function active

• Find center of glitch (Color)

Centers the mouse pointer over the glitch blob found, if any

• Auto solve glitches

Turns the Auto solve glitches function on or off

• Solve glitch with near pixel method

Instead of re-render all pixels with the same iteration count value(color) only the connected pixels
are re-rendered. On some locations other areas in the same view have the exact same iteration
count values. These pixels may be correctly rendered and may be incorrect if re-rendered with
another reference

• Find highest iteration

Centers the mouse pointer over the pixel with the highest iteration

• Show iterations

Displays the image black-and-white with the pixels with the highest iteration as white and the
pixels with the lowest iteration as black

16

• No approximation

Turns the Series approximation function on or off.

• Non exact find Minibrot

Makes the Find Minibrot function fail every 20 zoom-in, in order to gain depth automatically
without ending up in a Minibrot

Newton-Raphson zooming may be a more useful option.

• Special

– Mirror

mirrors the image around the x-axis. Can be used on the deeper half of a zoom sequence to a
minibrot - but not too close to the minibrot and too close to the half. . .

• Show smooth transition colors

Displays the image black-and-white representing the smoothing coefficient

• Use long double always

Use always the 80-bit long double hardware data type. This can solve some type of glitches

• Use floatexp always

Use always the double mantissa/integer exponent data type. This probably only make the render
slower

• Use auto iterations

Turns automatic iteration control on or off. This is on per default.

• Set Ratio

Enables changing the ratio between height and width of the background image in order to enable
stretching locations. Combinated with rotation, an almost infinite skewing ability is enabled, useful
when exploring the hidden treasures of the new Fractals!

• Reset Ratio

Reset ratio to default

• Skew animation

Activates or deactivas skew animation. If activated, a popup allows you to specify end skew
parameters and number of frames. The fractal will be rendered frame by frame, and can be
combined with frame by frame rendering in KeyFrameMovieMaker or MMY3D

• Show glitches

When activated, glitches are displayed with a solid color

• Newton-Raphson zooming

When activated, a dialog will be displayed, which allows you to select if the zoom should jump
directly to the minibrot, or to 3/4 zooms to the minibrot, where the current pattern is doubled, etc.

The zoom level of the current pattern is set when opening the dialog, and can be changed with the
capture button (which gets the current zoom level from the image view).

Click on the fractal to specify the start point of the search of the minibrot. The current zoom size
is used to set the boundaries of search around the selected point

Notice that it can take a long time to calculate the position of deep minibrots. However, that should
be still much faster than zooming to the minibrot manually by selecting the center of the pattern in
the view, or with the automatic search of minibrot that is also using the pattern center.

When “auto skew (newton)” is enabled before activating, the view will be skewed to make features
near the minibrot approximately circular.

17

When “auto skew (escape)” is activated, the view will be skewed to make features in the current
view approximately circular (without zooming).

• No reuse center

Don’t paste the previous image in the middle when zooming out. Disabling this (ie, do reuse center)
can be faster but can also lead to bad images.

• Show crosshair window

Display a small window that magnifies the area around the mouse cursor. Perfect for precisely
picking particular pixels for zooming etc.

About
At the very top right:

• ?

Open about dialog, with version information and credits.

This also functions as a lock mechanism, preventing accidental zooming while a long render is taking
place.

Iterations dialog
• Number of iterations. Increase this if the interior is “blobby”.

• Minimum iteration count achieved in the image (display only).

• Maximum iteration count achieved in the image (display only).

• Series approximation iteration count (display only).

• Smooth method

– High bailout: large escape radius gives a smoother appearance.

– Bailout=2: small escape radius can help finding features.

• Value of the power p in the fractal formula (not used in every formula)

• Fractal type (formula name). See below for details.

• Maximum number of secondary reference points for automatic glitch correction. There is a hard
limit of 10000, which is also the default.

• Glitch low tolerance. When checked, glitches are more likely to be detected. Disabling it can lead
to bad images, but is faster.

• Series approximation low tolerance. When checked, series approximation is stricter. Disabling it
can lead to bad images, but is faster.

• Automatic approximation terms based on number of pixels.

• Approximation terms: number of terms used for series approximation.

• Calculations per second (display only).

• Real and Imag checkboxes: use these parts of z when considering bailout past the escape radius.

• Seed R and I number boxes: start iterating z from these coordinates (default 0 + 0 i, for best
semantics it should be a critical point of the iteration formula, where it’s d/dz derivative is zero).

• Factor a R and I number boxes: set the complex number a (denoted f = d + e i in the formula
list below) for TheRedshiftRider formulas.

• Jitter seed: non-zero enables jitter with a pseudo-random-number generator seed value.

• Jitter scale in units of a pixel (1 pixel is sensible in most cases).

• Gaussian jitter is probably best left disabled (uniform jitter looks better).

18

• Derivatives calculation can be enabled (if needed for analytic DE colouring) or disabled (speeds up
rendering).

Formulas

Notation:

i -- imaginary unit (square root of -1)
p -- integer power between 2 and 5 (10 for Mandelbrot)
c = a + i b -- pixel coordinates (parameter plane)
z = x + i y -- iteration variable
w = u + i v -- temporary variable for two-stage formulas
f = d + i e -- constant 'a' for TheRedshiftRider formulas
l m ... -- juxtaposition is multiplication
^ -- raise an expression to a positive integer power
|.| -- surrounding a real-valued expression: absolute value

Formulas:

• Mandelbrot

z := z^p + c

• Burning Ship

z := (|x| + i |y|)^p + c

• Buffalo

w := z^p
z := (|u| + i |v|) + c

• Celtic

w := z^p
z := (|u| + i v) + c

• Mandelbar

z := (x - i y)^p + c

• Mandelbar Celtic

w := (x - i y)^2
z := (|u| + i v) + c

• Perpendicular Mandelbrot

z := (|x| - i y)^2 + c

• Perpendicular Burning Ship

z := (x - i |y|)^2 + c

• Perpendicular Celtic

w := (|x| - i y)^2
z := (|u| + i v) + c

• Perpendicular Buffalo

w := (x - i |y|)^2
z := (|u| + i v) + c

• Cubic Quasi Burning Ship

z := (|x| (x^2 - 3 y^2) - i |y (3 x^2 - y^2)|) + c

• Cubic Partial BS Real

z := (|x| (x^2 - 3 y^2) + i y (3 x^2 - y^2)) + c

19

• Cubic Partial BS Imag

z := (x (x^2 - 3 y^2) + i |y| (3 x^2 - y^2)) + c

• Cubic Flying Squirrel (Buffalo Imag)

z := (x (x^2 - 3 y^2) + i |y (3 x^2 - y^2)|) + c

• Cubic Quasi Perpendicular

z := (|x| (x^2 - 3 y^2) - i y |3 x^2 - y^2|) + c

• 4th Burning Ship Partial Imag

z := (x + i |y|)^4 + c

• 4th Burning Ship Partial Real

z := (|x| + i y)^4 + c

• 4th Burning Ship Partial Real Mbar

z := (|x| - i y)^4 + c

• 4th Celtic Burning Ship Partial Imag

w := (x + i |y|)^4
z := (|u| + i v) + c

• 4th Celtic Burning Ship Partial Real

w := (|x| + i y)^4
z := (|u| + i v) + c

• 4th Celtic Burning Ship Partial Real Mbar

w := (|x| - i |y|)^4
z := (|u| + i v) + c

• 4th Buffalo Partial Imag

w := z^4
z := (u + i |v|) + c

• 4th Celtic Mbar

w := (x - i y)^4
z := (|u| + i v) + c

• 4th False Quasi Perpendicular

z := ((x^4 + y^4 - 6 x^2 y^2) - i 4 x y |x^2 - y^2|) + c

• 4th False Quasi Heart

z := ((x^4 + y^4 - 6 x^2 y^2) + i 4 x y |x^2 - y^2|) + c

• 4th Celtic False Quasi Perpendicular

z := (|x^4 + y^4 - 6 x^2 y^2| - i 4 x y |x^2 - y^2|) + c

• 4th Celtic False Quasi Heart

z := (|x^4 + y^4 - 6 x^2 y^2| + i 4 x y |x^2 - y^2|) + c

• 5th Burning Ship Partial

z := (|x| + i y)^5 + c

• 5th Burning Ship Partial Mbar

z := (|x| - i y)^5 + c

• 5th Celtic Mbar

20

w := (x - i y)^5
z := (|u| + i v) + c

• 5th Quasi Burning Ship (BS/Buffalo Hybrid)

w := (|x| + i y)^5
z := (u - i |v|) + c

• 5th Quasi Perpendicular

z := (|x| (x^4 + 5 y^4 - 10 x^2 y^2) - i y (|5 x^4 + y^4 - 10 x^2 y^2|)) + c

• 5th Quasi Heart

z := (|x| (x^4 + 5 y^4 - 10 x^2 y^2) + i y (|5 x^4 + y^4 - 10 x^2 y^2|)) + c

• SimonBrot 4th

z := z^2 (|x| + i |y|)^2 + c

• 4th Imag Quasi Perpendicular / Heart

z := ((x^4 + y^4 - 6 x^2 y^2) + i 4 x |y (x^2 - y^2)|) + c

• 4th Real Quasi Perpendicular

z := ((x^4 + y^4 - 6 x^2 y^2) - i 4 y |x (x^2 - y^2)|) + c

• 4th Real Quasi Heart

z := ((x^4 + y^4 - 6 x^2 y^2) + i 4 y |x (x^2 - y^2)|) + c

• 4th Celtic Imag Quasi Perpendicular / Heart

z := (|x^4 + y^4 - 6 x^2 y^2| + i 4 x |y (x^2 - y^2)|) + c

• 4th Celtic Real Quasi Perpendicular

z := (|x^4 + y^4 - 6 x^2 y^2| - i 4 y |x (x^2 - y^2)|) + c

• 4th Celtic Real Quasi Heart

z := (|x^4 + y^4 - 6 x^2 y^2| + i 4 y |x (x^2 - y^2)|) + c

• SimonBrot 6th

z := z^3 (|x| + i |y|)^3 + c

• HPDZ Buffalo

z := (((x^2 - y^2) - |x|) + i (|2xy| - |y|)) + c

• TheRedshiftRider 1: a*zˆ2+zˆ3+c

z := (f z^2 + z^3) + c

• TheRedshiftRider 2: a*zˆ2-zˆ3+c

z := (f z^2 - z^3) + c

• TheRedshiftRider 3: 2*zˆ2-zˆ3+c

z := (2 z^2 - z^3) + c

• TheRedshiftRider 4: a*zˆ2+zˆ4+c

z := (f z^2 + z^4) + c

• TheRedshiftRider 5: a*zˆ2-zˆ4+c

z := (f z^2 - z^4) + c

• TheRedshiftRider 6: a*zˆ2+zˆ5+c

z := (f z^2 + z^5) + c

• TheRedshiftRider 7: a*zˆ2-zˆ5+c

21

z := (f z^2 - z^5) + c

• TheRedshiftRider 8: a*zˆ2+zˆ6+c

z := (f z^2 + z^6) + c

• TheRedshiftRider 9: a*zˆ2-zˆ6+c

z := (f z^2 - z^6) + c

• SimonBrot2 4th

w := z^2
z := w (|u| + i |v|) + c

A machine-readable version of this formula list is found in the ‘et’ repository: https://code.mathr.co.
uk/et/blob/kf:/kf/formulas.et This is used by ‘et’ when generating formula code (for Newton-Raphson
zooming, etc).

Number of colors dialog
• Number of key colors

Set the number of key colors between 1 and 1024.

• Divide iteration

Divide each iteration number with this value, for dense images this value can be greater than 1.
For DE, values less than 1 can be useful.

• Color offset

Offset the colors in the palette

• Random

Fill the palette with random colors made from the Seed value. The Seed button select a seed value
randomly.

• More contrast

Move RGB values closer to max or min

• Less contrast

Move RGB values closer to the middle

• Show slopes

Enable slope encoding for 3D effect.

First value is the magnification of the slopes. The start value of 100 is suitable for the unzoomed
view. Deep views requires a couple of magnitudes higher value.

The second value is the percentage with which the slope encoding is applied on the coloring. 100 is
max, however flat areas will still have the palette color visible.

• Save palette

Save the current palette in KFP (*.kfp) file

• Open palette

Load palette from a KFP (*.kfp) file

• Expand double

Double the number of key colors without changing the palette. This allows finer control of individual
colors without changing the palette for other colors

• Expand all

Increase the number of key color to maximum 1024 without changing the palette

22

https://code.mathr.co.uk/et/blob/kf:/kf/formulas.et
https://code.mathr.co.uk/et/blob/kf:/kf/formulas.et

• Double

Double the key colors by repeating them

• Merge Colors

Allows a selected color to be merged to every specied key color

• Show index

Capture the mouse, hover the mouse over the fractal image and the corresponding color in the list
will be highlighted. Click and the color selection dialog will be displayed for the active color

• Smooth color transition

Makes the transitions of colors smooth

• Inverse smooth color transition

Inverse the smooth color transition which makes edges more visible

• Unnamed dropdown box

Specifies handling of the iteration count values prior to coloring

• Palette waves

The palette can be filled from sine waves applied on Red, Green, Blue and Black-and-white. Each
input box specifies the number of periods applied on the number of key colors in the palette. If the
input box is left empty, no wave of this color is applied. At right of each input box the “P”-button
makes the number you entered prime, since different prime numbers probably give more variation.
The last input box specifies the waves offset.

The button “Generate” applies the waves on the palette, the “Seed” button fills the fields with
random values

• Infinite waves

Waves can be applied on Hue, Saturation and Brightness rather than RGB values. The Period value
specifies the length of the period (not the number of periods as for the Palette waves). Periods with
prime numbers should be able to produce an infinite number unique colors

A negative value on Hue, Saturation or Brightness makes a flat percentage value to be applied on
all iterations.

Command Line Usage
kf.exe [options]

-l, --load-location [FILE.kfr] load location file
-s, --load-settings [FILE.kfs] load settings file
-t, --save-tif [FILE.tif] save TIFF
-p, --save-png [FILE.png] save PNG
-j, --save-jpg [FILE.jpg] save JPEG
-m, --save-map [FILE.kfb] save KFB
--log (debug|status|info|warn|error)

logging verbosity
-v, -V, --version show version
-h, -H, -?, --help show this help

Locations and settings can also be image files with embedded comments.

If any of the save options are give, KF switches to a non-interactive mode - it will render the image and
save to all specified types before quitting. No GUI.

A typical workflow would be to start KF without arguments, set up the window size (eg 640x360), image
size (eg 3840x2160), glitch low tolerance flag, etc, then save the settings to a .kfs file, before quitting.

Then launch KF from the command line telling it to load the settings file you just saved, plus the location
file you want to render, and where to save the output images to. Then wait patiently. You can write a

23

script that renders multiple locations in succession, either in batch .BAT on Windows, or in Shell .sh on
*nix with WINE.

Note that you might have to double up backslashes within quoted paths (if they contain spaces). Maybe
forward slashes work instead, but you do need quotes (either single '' or double "", in a matching pair
around the whole argument) if there are spaces. Your shell might also do funky stuff with slashes and
quotes, so you might need to double up or quadruple up the backslashes and quotes. Easiest to avoid
spaces and keep your files in the current working directory. . . Example:

kf.exe -s settings.kfs -l location.kfr -p out.png -j out.jpg -m out.kfb

Use --log info to disable the status updates, use --log warn to output only important messages. The
default is --log status.

24

	Kalles Fraktaler 2 +
	Known Bugs
	Differences From Upstream 2.11.1
	Incompatible Changes
	Other Changes

	Change Log
	TODO
	User Interface
	Calculations
	Newton-Raphson Zooming
	Preprocessor
	Colouring

	Getting The Code
	Building On Linux
	Building on Windows
	Legal
	Acknowledgements

	User Manual
	File
	Action
	Special
	About
	Iterations dialog
	Formulas

	Number of colors dialog
	Command Line Usage

