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How Long is a Coast?
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How Long is a Coast?

It looks this long.



How Long is a Coast?

But as you look closer,



How Long is a Coast?

more details appear,



How Long is a Coast?

giving a longer length,



How Long is a Coast?

so when do you stop?
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How Long is a Coast?

It gets longer the closer you look.



How Long is a Coast?

The concept of “length” is usually meaningless for geographical curves.
They can be considered superpositions of features of widely scattered
characteristic sizes; as even finer features are taken into account,
the total measured length increases, and there is usually no clear-
cut gap or crossover, between the realm of geography and details with
which geography need not be concerned.

– B. B. Mandelbrot
“How long is the coast of Britain?”
Science: 156, 1967, 636-638
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A better question:

How much longer does a coast get the closer you look?
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A better question:
How much longer does a coast get the closer you look?
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Box-Counting Dimension

The idea:

I Pick a box size r .
I Cover the boundary with boxes of size r .
I Count how many boxes are needed Nr .
I See how quickly Nr increases as r gets smaller.
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dim = lim
r→0
− logNr

log r

Converges very slowly, not practical.
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A more practical definition:

dim = lim
r→0

log2
Nr
N2r

But finite computers have issues with infinite limits.
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The formula I actually use:

dim = 1
2 log2

N2r0

N8r0

r0 = pixel size

More on the trade-offs involved later. . .
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Example: circle
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r = 2−1

N = 4
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N = 12
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Example: circle

r = 2−7

N = 444



Example: circle

r = 2−8

N = 860



Example: circle

r = 2−9

N = 1412



Example: circle

dim ≈ 0.968 . . .



Example: circle

dim = 1

(limit as r → 0)
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r = 2−1

N = 7
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Example: Ireland
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Example: Ireland

r = 2−6
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Example: Ireland

r = 2−7

N = 1033



Example: Ireland

r = 2−8

N = 2021



Example: Ireland

r = 2−9

N = 3520



Example: Ireland

dim ≈ 1.125 . . .
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Example: Norway

r = 2−1

N = 9



Example: Norway

r = 2−2

N = 25
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r = 2−4
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r = 2−5
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Example: Norway

r = 2−6

N = 1310



Example: Norway

r = 2−7

N = 3333



Example: Norway

r = 2−8

N = 7641



Example: Norway

r = 2−9

N = 13070



Example: Norway

dim ≈ 1.385 . . .
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Example: carpet

r = 2−1

N = 16



Example: carpet

r = 2−2

N = 36



Example: carpet

r = 2−3
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Example: carpet

r = 2−4
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Example: carpet

r = 2−5

N = 1771



Example: carpet

r = 2−6

N = 6418



Example: carpet

r = 2−7

N = 23340



Example: carpet

r = 2−8

N = 82680



Example: carpet

r = 2−9

N = 262144



Example: carpet

dim ≈ 1.860 . . .



Example: carpet

dim = log 8
log 3

≈ 1.893 . . .

(limit as r → 0)
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Example: dust

r = 2−1

N = 16



Example: dust

r = 2−2

N = 36
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Example: dust

r = 2−9

N = 4096



Example: dust

dim ≈ 1.192 . . .



Example: dust

dim = log 4
log 3

≈ 1.262 . . .

(limit as r → 0)
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Complex Dynamics

Consider the quadratic polynomial:

fc(z) = z2 + c

Here z, c ∈ C, complex numbers.
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Complex Dynamics

The quadratic polynomial can be iterated:

f n
c = fc(fc(. . . (fc(fc︸ ︷︷ ︸

n times

(z))) . . .))

Or in more manageable notation:

f 0
c (z) = z
f n+1
c (z) = f n

c (fc (z))



Complex Dynamics

The quadratic polynomial can be iterated:

f n
c = fc(fc(. . . (fc(fc︸ ︷︷ ︸

n times

(z))) . . .))

Or in more manageable notation:

f 0
c (z) = z
f n+1
c (z) = f n

c (fc (z))



Complex Dynamics

What is the behaviour of f n
c (z) as n →∞?
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I |z| < 1
I |z| = 1
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The initial cases are Fatou components Fm(fc).

I Within each Fatou component the behaviour is the same.
I Moreover, nearby points stay nearby under iteration.
I (In fact, they usually get closer.)
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The last case (none of the above) is the Julia set J (fc).

I Nearby points get further apart under iteration.
I But they stay within the Julia set.
I The Julia set is the boundary of the Fatou components.
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Image Generation

What do Julia sets look like?



Image Generation

The first step is to determine the number of Fatou components.

I There is always one component F−1 with f n
c (z)→∞.

I Call the number of other components p.
I Then there are components Fm , 0 ≤ m < p with f pn

c (z)→ z∗m .
The algorithm for determining p from c is quite involved, so I won’t go
into it now.
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Image Generation

The second step is to determine the attractor of F0:
(if p = 0, skip this step)

I Define z∗0 = limn→∞ f pn
c (0).

I z∗0 satisfies f p
c (z∗0) = z∗0.

I The solution can be found using Newton’s method.



Image Generation

The second step is to determine the attractor of F0:
(if p = 0, skip this step)

I Define z∗0 = limn→∞ f pn
c (0).

I z∗0 satisfies f p
c (z∗0) = z∗0.

I The solution can be found using Newton’s method.



Image Generation

The second step is to determine the attractor of F0:
(if p = 0, skip this step)

I Define z∗0 = limn→∞ f pn
c (0).

I z∗0 satisfies f p
c (z∗0) = z∗0.

I The solution can be found using Newton’s method.



Image Generation

The second step is to determine the attractor of F0:
(if p = 0, skip this step)

I Define z∗0 = limn→∞ f pn
c (0).

I z∗0 satisfies f p
c (z∗0) = z∗0.

I The solution can be found using Newton’s method.



Image Generation

Now we can iterate fc(z) with z set by the coordinates of the pixel
within the image, to determine which Fatou component z is in:

I We need two numbers, a large E for detecting attraction to ∞ and
a small e for detecting attraction to z∗0.

I If |f n
c (z)| > E , then z ∈ F−1.

I If |f n
c (z)− z∗0| < e, then z ∈ Fn mod p.

I If n > N , where N is a maximum iteration count necessary for
finite computers, then we give up, and don’t know much about z.
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Image Generation

While iterating, keep track of the derivative:

I ∂
∂z f

0
c (z) = 1

I ∂
∂z f

n+1
c (z) = 2f n

c (z) ∂
∂z f

n
c (z)

I In imperative programming language pseudo-code:
z := pixel coordinates
d := 1
for n := 0 to N

d := 2 * z * d
z := z * z + c
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I How to detect the boundary, if there is only one Fatou component?
I Even if there are more components, the boundary might be very

thin in places.
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Image Generation

The derivative provides an estimate of the distance to the Julia set:

d = |f
n
c (z)| log |f n

c (z)|∣∣∣ ∂
∂z f n

c (z)
∣∣∣

If d is small compared to the pixel size, the Julia set passes through
the pixel.
This formula is only valid for F−1 with f n

c (z)→∞, so it’s best to make
E as large as reasonably possible.
(There are other formulae for the other cases, but I couldn’t get them
to work reliably.)
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Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.

I If m = −1 and d is large, then colour the pixel white.
Compare our m with the m for neighbouring pixels:

I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:

I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.

I If all are the same, then colour the pixel white.
This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.

An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Examples

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Example: needle dust

c =− 2.1
+ 0.0i

dim ≈0.800 . . .



Example: elephant dust

c = + 0.5
+ 0.1i

dim ≈1.167 . . .



Example: seahorse dust

c =− 0.75
+ 0.25i

dim ≈1.609 . . .



Example: needle tip dendrite

c =− 2
+ 0i

dim ≈0.999 . . .



Example: 2-way hub dendrite

c =− 1.54368
+ 0i

dim ≈1.450 . . .



Example: 3-way hub dendrite

c =− 0.10109
+ 0.95628i

dim ≈1.564 . . .



Example: period 1

c = + 0
+ 0i

dim ≈1.086 . . .



Example: period 2

c =− 1
+ 0i

dim ≈1.331 . . .



Example: period 3

c =− 0.12256
+ 0.74486i

dim ≈1.443 . . .



Example: period 1 near 2 over 5

c =− 0.45400
+ 0.49378i

dim ≈1.257 . . .



Example: period 5 near 2 over 5

c =− 0.48734
+ 0.53932i

dim ≈1.485 . . .



Example: period 5

c =− 0.50434
+ 0.56276i

dim ≈1.550 . . .



Example: period 3 island

c =− 1.75487
+ 0i

dim ≈1.309 . . .



Example: period 3 island 1 over 3 bulb

c =− 1.75778
+ 0.01379i

dim ≈1.455 . . .



Example: period 4 island

c =− 0.15652
+ 1.03224i

dim ≈1.463 . . .
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The implementation is written in C99:

I C99 supports complex numbers.
I Low-level and efficient.
I Most libraries have C interfaces.
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Implementation

Mipmap reduction averages groups of pixels:

0.00 0.25 0.50 0.75 1.00
Box-counting should count if any subpixel was black.
The solution is to threshold the grey level in each mipmap level.
The threshold should between the lightest grey and white.



Implementation
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I First clear the depth buffer.
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I The occlusion query counts the number of passed pixels in the

second draw.



Implementation

Box-counting is performed with occlusion queries:
I First clear the depth buffer.

I Then draw the Julia set, discarding pixels below a threshold.
I Then draw again, but further away.
I The depth test prevents pixels that were rendered the first time

from being drawn, so only the previously discarded pixels pass.
I The occlusion query counts the number of passed pixels in the

second draw.



Implementation

Box-counting is performed with occlusion queries:
I First clear the depth buffer.
I Then draw the Julia set, discarding pixels below a threshold.

I Then draw again, but further away.
I The depth test prevents pixels that were rendered the first time

from being drawn, so only the previously discarded pixels pass.
I The occlusion query counts the number of passed pixels in the

second draw.



Implementation

Box-counting is performed with occlusion queries:
I First clear the depth buffer.
I Then draw the Julia set, discarding pixels below a threshold.
I Then draw again, but further away.

I The depth test prevents pixels that were rendered the first time
from being drawn, so only the previously discarded pixels pass.

I The occlusion query counts the number of passed pixels in the
second draw.



Implementation

Box-counting is performed with occlusion queries:
I First clear the depth buffer.
I Then draw the Julia set, discarding pixels below a threshold.
I Then draw again, but further away.
I The depth test prevents pixels that were rendered the first time

from being drawn, so only the previously discarded pixels pass.

I The occlusion query counts the number of passed pixels in the
second draw.



Implementation

Box-counting is performed with occlusion queries:
I First clear the depth buffer.
I Then draw the Julia set, discarding pixels below a threshold.
I Then draw again, but further away.
I The depth test prevents pixels that were rendered the first time

from being drawn, so only the previously discarded pixels pass.
I The occlusion query counts the number of passed pixels in the

second draw.



Implementation

Performance:
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Results
dim
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But is it accurate?

No.
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Recall the formula I actually used:

dim = 1
2 log2

N2r0

N8r0

r0 = pixel size

This formula is based on simple linear regression of logN against log r .
I tried all possibilities of 0 ≤ s < t ≤ 12 for a regression range between
2sr0 and 2tr0.
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t
s 0 1 2 3 4 5 6 7 8 9 10 11
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When s = 0 and t is
small, the dimension
calculated is wrong
because the Julia set is
too inexact at the
resolution of the pixel
grid.
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Increasing s a little
reduces this artifact of
pixel resolution, but t
needs to stay small or
the results go bad
again.
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t
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When both s and t are
large, the results are
nonsense.



Results
t
s 0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

12

The best trade-off
seems to be at s = 1
and t = 3, which gives
the formula I actually
used.



The End

The End.




	Fractal Dimension
	How Long is a Coast?
	Box-Counting Dimension
	Examples

	Julia Sets
	Complex Dynamics
	Image Generation
	Examples

	Fractal Dimension of Julia Sets
	Concept
	Implementation
	Results


