
Fractal Dimension of Julia Sets

Claude Heiland-Allen
claude@mathr.co.uk

March 6, 2015



Fractal Dimension of Julia Sets

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Fractal Dimension of Julia Sets

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Fractal Dimension of Julia Sets

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Fractal Dimension

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



How Long is a Coast?

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



How Long is a Coast?

How long is a coast?



How Long is a Coast?

It looks this long.



How Long is a Coast?

But as you look closer,



How Long is a Coast?

more details appear,



How Long is a Coast?

giving a longer length,



How Long is a Coast?

so when do you stop?



How Long is a Coast?

How long is a coast?



How Long is a Coast?

It gets longer the closer you look.



How Long is a Coast?

The concept of “length” is usually meaningless for geographical curves.
They can be considered superpositions of features of widely scattered
characteristic sizes; as even finer features are taken into account,
the total measured length increases, and there is usually no clear-
cut gap or crossover, between the realm of geography and details with
which geography need not be concerned.

– B. B. Mandelbrot
“How long is the coast of Britain?”
Science: 156, 1967, 636-638



How Long is a Coast?

A better question:

How much longer does a coast get the closer you look?



How Long is a Coast?

A better question:
How much longer does a coast get the closer you look?



Box-Counting Dimension

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Box-Counting Dimension

The idea:

I Pick a box size r .
I Cover the boundary with boxes of size r .
I Count how many boxes are needed Nr .
I See how quickly Nr increases as r gets smaller.



Box-Counting Dimension

The idea:
I Pick a box size r .

I Cover the boundary with boxes of size r .
I Count how many boxes are needed Nr .
I See how quickly Nr increases as r gets smaller.



Box-Counting Dimension

The idea:
I Pick a box size r .
I Cover the boundary with boxes of size r .

I Count how many boxes are needed Nr .
I See how quickly Nr increases as r gets smaller.



Box-Counting Dimension

The idea:
I Pick a box size r .
I Cover the boundary with boxes of size r .
I Count how many boxes are needed Nr .

I See how quickly Nr increases as r gets smaller.



Box-Counting Dimension

The idea:
I Pick a box size r .
I Cover the boundary with boxes of size r .
I Count how many boxes are needed Nr .
I See how quickly Nr increases as r gets smaller.



Box-Counting Dimension

The formal definition:

dim = lim
r→0
− logNr

log r

Converges very slowly, not practical.



Box-Counting Dimension

The formal definition:

dim = lim
r→0
− logNr

log r

Converges very slowly, not practical.



Box-Counting Dimension

A more practical definition:

dim = lim
r→0

log2
Nr
N2r

But finite computers have issues with infinite limits.



Box-Counting Dimension

A more practical definition:

dim = lim
r→0

log2
Nr
N2r

But finite computers have issues with infinite limits.



Box-Counting Dimension

The formula I actually use:

dim = 1
2 log2

N2r0

N8r0

r0 = pixel size

More on the trade-offs involved later. . .



Box-Counting Dimension

The formula I actually use:

dim = 1
2 log2

N2r0

N8r0

r0 = pixel size

More on the trade-offs involved later. . .



Examples

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Example: circle

circle



Example: circle

r = 2−1

N = 4



Example: circle

r = 2−2

N = 12



Example: circle

r = 2−3

N = 28



Example: circle

r = 2−4

N = 52



Example: circle

r = 2−5

N = 116



Example: circle

r = 2−6

N = 244



Example: circle

r = 2−7

N = 444



Example: circle

r = 2−8

N = 860



Example: circle

r = 2−9

N = 1412



Example: circle

dim ≈ 0.968 . . .



Example: circle

dim = 1

(limit as r → 0)



Example: Ireland

Ireland



Example: Ireland

r = 2−1

N = 7



Example: Ireland

r = 2−2

N = 18



Example: Ireland

r = 2−3

N = 44



Example: Ireland

r = 2−4

N = 94



Example: Ireland

r = 2−5

N = 217



Example: Ireland

r = 2−6

N = 485



Example: Ireland

r = 2−7

N = 1033



Example: Ireland

r = 2−8

N = 2021



Example: Ireland

r = 2−9

N = 3520



Example: Ireland

dim ≈ 1.125 . . .



Example: Norway

Norway



Example: Norway

r = 2−1

N = 9



Example: Norway

r = 2−2

N = 25



Example: Norway

r = 2−3

N = 68



Example: Norway

r = 2−4

N = 180



Example: Norway

r = 2−5

N = 488



Example: Norway

r = 2−6

N = 1310



Example: Norway

r = 2−7

N = 3333



Example: Norway

r = 2−8

N = 7641



Example: Norway

r = 2−9

N = 13070



Example: Norway

dim ≈ 1.385 . . .



Example: carpet

carpet



Example: carpet

r = 2−1

N = 16



Example: carpet

r = 2−2

N = 36



Example: carpet

r = 2−3

N = 140



Example: carpet

r = 2−4

N = 528



Example: carpet

r = 2−5

N = 1771



Example: carpet

r = 2−6

N = 6418



Example: carpet

r = 2−7

N = 23340



Example: carpet

r = 2−8

N = 82680



Example: carpet

r = 2−9

N = 262144



Example: carpet

dim ≈ 1.860 . . .



Example: carpet

dim = log 8
log 3

≈ 1.893 . . .

(limit as r → 0)



Example: dust

dust



Example: dust

r = 2−1

N = 16



Example: dust

r = 2−2

N = 36



Example: dust

r = 2−3

N = 100



Example: dust

r = 2−4

N = 256



Example: dust

r = 2−5

N = 441



Example: dust

r = 2−6

N = 1024



Example: dust

r = 2−7

N = 2304



Example: dust

r = 2−8

N = 4096



Example: dust

r = 2−9

N = 4096



Example: dust

dim ≈ 1.192 . . .



Example: dust

dim = log 4
log 3

≈ 1.262 . . .

(limit as r → 0)



Julia Sets

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Complex Dynamics

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Complex Dynamics

Consider the quadratic polynomial:

fc(z) = z2 + c

Here z, c ∈ C, complex numbers.



Complex Dynamics

Consider the quadratic polynomial:

fc(z) = z2 + c

Here z, c ∈ C, complex numbers.



Complex Dynamics

The quadratic polynomial can be iterated:

f n
c = fc(fc(. . . (fc(fc︸ ︷︷ ︸

n times

(z))) . . .))

Or in more manageable notation:

f 0
c (z) = z
f n+1
c (z) = f n

c (fc (z))



Complex Dynamics

The quadratic polynomial can be iterated:

f n
c = fc(fc(. . . (fc(fc︸ ︷︷ ︸

n times

(z))) . . .))

Or in more manageable notation:

f 0
c (z) = z
f n+1
c (z) = f n

c (fc (z))



Complex Dynamics

What is the behaviour of f n
c (z) as n →∞?



Complex Dynamics

When c = −2 there are 2 distinct cases:

I f n
c (z)→∞ as n →∞

I none of the above



Complex Dynamics

When c = −2 there are 2 distinct cases:
I f n

c (z)→∞ as n →∞

I none of the above



Complex Dynamics

When c = −2 there are 2 distinct cases:
I f n

c (z)→∞ as n →∞
I none of the above



Complex Dynamics

When c = 0 there are 3 distinct cases:

I f n
c (z)→∞ as n →∞

I f n
c (z)→ 0 as n →∞

I none of the above

I |z| > 1
I |z| < 1
I |z| = 1



Complex Dynamics

When c = 0 there are 3 distinct cases:
I f n

c (z)→∞ as n →∞

I f n
c (z)→ 0 as n →∞

I none of the above

I |z| > 1
I |z| < 1
I |z| = 1



Complex Dynamics

When c = 0 there are 3 distinct cases:
I f n

c (z)→∞ as n →∞
I f n

c (z)→ 0 as n →∞

I none of the above

I |z| > 1
I |z| < 1
I |z| = 1



Complex Dynamics

When c = 0 there are 3 distinct cases:
I f n

c (z)→∞ as n →∞
I f n

c (z)→ 0 as n →∞
I none of the above

I |z| > 1
I |z| < 1
I |z| = 1



Complex Dynamics

When c = 0 there are 3 distinct cases:
I f n

c (z)→∞ as n →∞
I f n

c (z)→ 0 as n →∞
I none of the above

I |z| > 1

I |z| < 1
I |z| = 1



Complex Dynamics

When c = 0 there are 3 distinct cases:
I f n

c (z)→∞ as n →∞
I f n

c (z)→ 0 as n →∞
I none of the above

I |z| > 1
I |z| < 1

I |z| = 1



Complex Dynamics

When c = 0 there are 3 distinct cases:
I f n

c (z)→∞ as n →∞
I f n

c (z)→ 0 as n →∞
I none of the above

I |z| > 1
I |z| < 1
I |z| = 1



Complex Dynamics

When c = −1 there are 4 distinct cases:

I f n
c (z)→∞ as n →∞

I f 2n
c (z)→ 0 as n →∞

I f 2n
c (z)→ −1 as n →∞

I none of the above



Complex Dynamics

When c = −1 there are 4 distinct cases:
I f n

c (z)→∞ as n →∞

I f 2n
c (z)→ 0 as n →∞

I f 2n
c (z)→ −1 as n →∞

I none of the above



Complex Dynamics

When c = −1 there are 4 distinct cases:
I f n

c (z)→∞ as n →∞
I f 2n

c (z)→ 0 as n →∞

I f 2n
c (z)→ −1 as n →∞

I none of the above



Complex Dynamics

When c = −1 there are 4 distinct cases:
I f n

c (z)→∞ as n →∞
I f 2n

c (z)→ 0 as n →∞
I f 2n

c (z)→ −1 as n →∞

I none of the above



Complex Dynamics

When c = −1 there are 4 distinct cases:
I f n

c (z)→∞ as n →∞
I f 2n

c (z)→ 0 as n →∞
I f 2n

c (z)→ −1 as n →∞
I none of the above



Complex Dynamics

The initial cases are Fatou components Fm(fc).

I Within each Fatou component the behaviour is the same.
I Moreover, nearby points stay nearby under iteration.
I (In fact, they usually get closer.)



Complex Dynamics

The initial cases are Fatou components Fm(fc).
I Within each Fatou component the behaviour is the same.

I Moreover, nearby points stay nearby under iteration.
I (In fact, they usually get closer.)



Complex Dynamics

The initial cases are Fatou components Fm(fc).
I Within each Fatou component the behaviour is the same.
I Moreover, nearby points stay nearby under iteration.

I (In fact, they usually get closer.)



Complex Dynamics

The initial cases are Fatou components Fm(fc).
I Within each Fatou component the behaviour is the same.
I Moreover, nearby points stay nearby under iteration.
I (In fact, they usually get closer.)



Complex Dynamics

The last case (none of the above) is the Julia set J (fc).

I Nearby points get further apart under iteration.
I But they stay within the Julia set.
I The Julia set is the boundary of the Fatou components.



Complex Dynamics

The last case (none of the above) is the Julia set J (fc).
I Nearby points get further apart under iteration.

I But they stay within the Julia set.
I The Julia set is the boundary of the Fatou components.



Complex Dynamics

The last case (none of the above) is the Julia set J (fc).
I Nearby points get further apart under iteration.
I But they stay within the Julia set.

I The Julia set is the boundary of the Fatou components.



Complex Dynamics

The last case (none of the above) is the Julia set J (fc).
I Nearby points get further apart under iteration.
I But they stay within the Julia set.
I The Julia set is the boundary of the Fatou components.



Image Generation

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Image Generation

What do Julia sets look like?



Image Generation

The first step is to determine the number of Fatou components.

I There is always one component F−1 with f n
c (z)→∞.

I Call the number of other components p.
I Then there are components Fm , 0 ≤ m < p with f pn

c (z)→ z∗m .
The algorithm for determining p from c is quite involved, so I won’t go
into it now.



Image Generation

The first step is to determine the number of Fatou components.
I There is always one component F−1 with f n

c (z)→∞.

I Call the number of other components p.
I Then there are components Fm , 0 ≤ m < p with f pn

c (z)→ z∗m .
The algorithm for determining p from c is quite involved, so I won’t go
into it now.



Image Generation

The first step is to determine the number of Fatou components.
I There is always one component F−1 with f n

c (z)→∞.
I Call the number of other components p.

I Then there are components Fm , 0 ≤ m < p with f pn
c (z)→ z∗m .

The algorithm for determining p from c is quite involved, so I won’t go
into it now.



Image Generation

The first step is to determine the number of Fatou components.
I There is always one component F−1 with f n

c (z)→∞.
I Call the number of other components p.
I Then there are components Fm , 0 ≤ m < p with f pn

c (z)→ z∗m .

The algorithm for determining p from c is quite involved, so I won’t go
into it now.



Image Generation

The first step is to determine the number of Fatou components.
I There is always one component F−1 with f n

c (z)→∞.
I Call the number of other components p.
I Then there are components Fm , 0 ≤ m < p with f pn

c (z)→ z∗m .
The algorithm for determining p from c is quite involved, so I won’t go
into it now.



Image Generation

The second step is to determine the attractor of F0:
(if p = 0, skip this step)

I Define z∗0 = limn→∞ f pn
c (0).

I z∗0 satisfies f p
c (z∗0) = z∗0.

I The solution can be found using Newton’s method.



Image Generation

The second step is to determine the attractor of F0:
(if p = 0, skip this step)

I Define z∗0 = limn→∞ f pn
c (0).

I z∗0 satisfies f p
c (z∗0) = z∗0.

I The solution can be found using Newton’s method.



Image Generation

The second step is to determine the attractor of F0:
(if p = 0, skip this step)

I Define z∗0 = limn→∞ f pn
c (0).

I z∗0 satisfies f p
c (z∗0) = z∗0.

I The solution can be found using Newton’s method.



Image Generation

The second step is to determine the attractor of F0:
(if p = 0, skip this step)

I Define z∗0 = limn→∞ f pn
c (0).

I z∗0 satisfies f p
c (z∗0) = z∗0.

I The solution can be found using Newton’s method.



Image Generation

Now we can iterate fc(z) with z set by the coordinates of the pixel
within the image, to determine which Fatou component z is in:

I We need two numbers, a large E for detecting attraction to ∞ and
a small e for detecting attraction to z∗0.

I If |f n
c (z)| > E , then z ∈ F−1.

I If |f n
c (z)− z∗0| < e, then z ∈ Fn mod p.

I If n > N , where N is a maximum iteration count necessary for
finite computers, then we give up, and don’t know much about z.



Image Generation

Now we can iterate fc(z) with z set by the coordinates of the pixel
within the image, to determine which Fatou component z is in:

I We need two numbers, a large E for detecting attraction to ∞ and
a small e for detecting attraction to z∗0.

I If |f n
c (z)| > E , then z ∈ F−1.

I If |f n
c (z)− z∗0| < e, then z ∈ Fn mod p.

I If n > N , where N is a maximum iteration count necessary for
finite computers, then we give up, and don’t know much about z.



Image Generation

Now we can iterate fc(z) with z set by the coordinates of the pixel
within the image, to determine which Fatou component z is in:

I We need two numbers, a large E for detecting attraction to ∞ and
a small e for detecting attraction to z∗0.

I If |f n
c (z)| > E , then z ∈ F−1.

I If |f n
c (z)− z∗0| < e, then z ∈ Fn mod p.

I If n > N , where N is a maximum iteration count necessary for
finite computers, then we give up, and don’t know much about z.



Image Generation

Now we can iterate fc(z) with z set by the coordinates of the pixel
within the image, to determine which Fatou component z is in:

I We need two numbers, a large E for detecting attraction to ∞ and
a small e for detecting attraction to z∗0.

I If |f n
c (z)| > E , then z ∈ F−1.

I If |f n
c (z)− z∗0| < e, then z ∈ Fn mod p.

I If n > N , where N is a maximum iteration count necessary for
finite computers, then we give up, and don’t know much about z.



Image Generation

Now we can iterate fc(z) with z set by the coordinates of the pixel
within the image, to determine which Fatou component z is in:

I We need two numbers, a large E for detecting attraction to ∞ and
a small e for detecting attraction to z∗0.

I If |f n
c (z)| > E , then z ∈ F−1.

I If |f n
c (z)− z∗0| < e, then z ∈ Fn mod p.

I If n > N , where N is a maximum iteration count necessary for
finite computers, then we give up, and don’t know much about z.



Image Generation

While iterating, keep track of the derivative:

I ∂
∂z f

0
c (z) = 1

I ∂
∂z f

n+1
c (z) = 2f n

c (z) ∂
∂z f

n
c (z)

I In imperative programming language pseudo-code:
z := pixel coordinates
d := 1
for n := 0 to N

d := 2 * z * d
z := z * z + c



Image Generation

While iterating, keep track of the derivative:
I ∂

∂z f
0
c (z) = 1

I ∂
∂z f

n+1
c (z) = 2f n

c (z) ∂
∂z f

n
c (z)

I In imperative programming language pseudo-code:
z := pixel coordinates
d := 1
for n := 0 to N

d := 2 * z * d
z := z * z + c



Image Generation

While iterating, keep track of the derivative:
I ∂

∂z f
0
c (z) = 1

I ∂
∂z f

n+1
c (z) = 2f n

c (z) ∂
∂z f

n
c (z)

I In imperative programming language pseudo-code:
z := pixel coordinates
d := 1
for n := 0 to N

d := 2 * z * d
z := z * z + c



Image Generation

While iterating, keep track of the derivative:
I ∂

∂z f
0
c (z) = 1

I ∂
∂z f

n+1
c (z) = 2f n

c (z) ∂
∂z f

n
c (z)

I In imperative programming language pseudo-code:
z := pixel coordinates
d := 1
for n := 0 to N

d := 2 * z * d
z := z * z + c



Image Generation

Why do we need the derivative?

I The Julia set is the boundary of the Fatou components.
I How to detect the boundary, if there is only one Fatou component?
I Even if there are more components, the boundary might be very

thin in places.



Image Generation

Why do we need the derivative?
I The Julia set is the boundary of the Fatou components.

I How to detect the boundary, if there is only one Fatou component?
I Even if there are more components, the boundary might be very

thin in places.



Image Generation

Why do we need the derivative?
I The Julia set is the boundary of the Fatou components.
I How to detect the boundary, if there is only one Fatou component?

I Even if there are more components, the boundary might be very
thin in places.



Image Generation

Why do we need the derivative?
I The Julia set is the boundary of the Fatou components.
I How to detect the boundary, if there is only one Fatou component?
I Even if there are more components, the boundary might be very

thin in places.



Image Generation

The derivative provides an estimate of the distance to the Julia set:

d = |f
n
c (z)| log |f n

c (z)|∣∣∣ ∂
∂z f n

c (z)
∣∣∣

If d is small compared to the pixel size, the Julia set passes through
the pixel.
This formula is only valid for F−1 with f n

c (z)→∞, so it’s best to make
E as large as reasonably possible.
(There are other formulae for the other cases, but I couldn’t get them
to work reliably.)



Image Generation

The derivative provides an estimate of the distance to the Julia set:

d = |f
n
c (z)| log |f n

c (z)|∣∣∣ ∂
∂z f n

c (z)
∣∣∣

If d is small compared to the pixel size, the Julia set passes through
the pixel.
This formula is only valid for F−1 with f n

c (z)→∞, so it’s best to make
E as large as reasonably possible.
(There are other formulae for the other cases, but I couldn’t get them
to work reliably.)



Image Generation

The derivative provides an estimate of the distance to the Julia set:

d = |f
n
c (z)| log |f n

c (z)|∣∣∣ ∂
∂z f n

c (z)
∣∣∣

If d is small compared to the pixel size, the Julia set passes through
the pixel.

This formula is only valid for F−1 with f n
c (z)→∞, so it’s best to make

E as large as reasonably possible.
(There are other formulae for the other cases, but I couldn’t get them
to work reliably.)



Image Generation

The derivative provides an estimate of the distance to the Julia set:

d = |f
n
c (z)| log |f n

c (z)|∣∣∣ ∂
∂z f n

c (z)
∣∣∣

If d is small compared to the pixel size, the Julia set passes through
the pixel.
This formula is only valid for F−1 with f n

c (z)→∞, so it’s best to make
E as large as reasonably possible.

(There are other formulae for the other cases, but I couldn’t get them
to work reliably.)



Image Generation

The derivative provides an estimate of the distance to the Julia set:

d = |f
n
c (z)| log |f n

c (z)|∣∣∣ ∂
∂z f n

c (z)
∣∣∣

If d is small compared to the pixel size, the Julia set passes through
the pixel.
This formula is only valid for F−1 with f n

c (z)→∞, so it’s best to make
E as large as reasonably possible.
(There are other formulae for the other cases, but I couldn’t get them
to work reliably.)



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.

I If m = −1 and d is large, then colour the pixel white.
Compare our m with the m for neighbouring pixels:

I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:

I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.

I If all are the same, then colour the pixel white.
This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.

An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Image Generation

Now we know the Fatou component Fm for each pixel, and for m = −1
we also have a distance estimate d. This is enough to generate an
image:

I If m = −1 and d is small, then colour the pixel black.
I If m = −1 and d is large, then colour the pixel white.

Compare our m with the m for neighbouring pixels:
I If any are different, then colour the pixel black.
I If all are the same, then colour the pixel white.

This image has black pixels near the Julia set, and white pixels
elsewhere.
An extension is to colour pixels by the value of m, instead of white, as
in the following examples.



Examples

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Example: needle dust

c =− 2.1
+ 0.0i

dim ≈0.800 . . .



Example: elephant dust

c = + 0.5
+ 0.1i

dim ≈1.167 . . .



Example: seahorse dust

c =− 0.75
+ 0.25i

dim ≈1.609 . . .



Example: needle tip dendrite

c =− 2
+ 0i

dim ≈0.999 . . .



Example: 2-way hub dendrite

c =− 1.54368
+ 0i

dim ≈1.450 . . .



Example: 3-way hub dendrite

c =− 0.10109
+ 0.95628i

dim ≈1.564 . . .



Example: period 1

c = + 0
+ 0i

dim ≈1.086 . . .



Example: period 2

c =− 1
+ 0i

dim ≈1.331 . . .



Example: period 3

c =− 0.12256
+ 0.74486i

dim ≈1.443 . . .



Example: period 1 near 2 over 5

c =− 0.45400
+ 0.49378i

dim ≈1.257 . . .



Example: period 5 near 2 over 5

c =− 0.48734
+ 0.53932i

dim ≈1.485 . . .



Example: period 5

c =− 0.50434
+ 0.56276i

dim ≈1.550 . . .



Example: period 3 island

c =− 1.75487
+ 0i

dim ≈1.309 . . .



Example: period 3 island 1 over 3 bulb

c =− 1.75778
+ 0.01379i

dim ≈1.455 . . .



Example: period 4 island

c =− 0.15652
+ 1.03224i

dim ≈1.463 . . .



Fractal Dimension of Julia Sets

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Concept

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Concept

The Mandelbrot set is a c-plane plot of whether J (fc) is connected.

Some visualisations of the Mandelbrot set use psychedelic colours, but
the mathematical object is binary.



Concept

The Mandelbrot set is a c-plane plot of whether J (fc) is connected.
Some visualisations of the Mandelbrot set use psychedelic colours, but
the mathematical object is binary.



Concept

The Mandelbrot set



Concept

What would a c-plane plot of dim J (fc) look like?

0 ≤ dim J (fc) ≤ 2, so a spectrum of colours would be necessary.



Concept

What would a c-plane plot of dim J (fc) look like?
0 ≤ dim J (fc) ≤ 2, so a spectrum of colours would be necessary.



Implementation

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Implementation

The implementation is written in C99:

I C99 supports complex numbers.
I Low-level and efficient.
I Most libraries have C interfaces.



Implementation

The implementation is written in C99:
I C99 supports complex numbers.

I Low-level and efficient.
I Most libraries have C interfaces.



Implementation

The implementation is written in C99:
I C99 supports complex numbers.
I Low-level and efficient.

I Most libraries have C interfaces.



Implementation

The implementation is written in C99:
I C99 supports complex numbers.
I Low-level and efficient.
I Most libraries have C interfaces.



Implementation

The implementation uses OpenGL for graphics:

I OpenGL supports programmable graphics hardware (GPUs).
I GPUs are very good at parallel number-crunching tasks, like

rendering a Julia set.
I Mipmap generation reduces images to progressively coarser pixel

resolutions.
I Occlusion queries can be used for counting pixels.



Implementation

The implementation uses OpenGL for graphics:
I OpenGL supports programmable graphics hardware (GPUs).

I GPUs are very good at parallel number-crunching tasks, like
rendering a Julia set.

I Mipmap generation reduces images to progressively coarser pixel
resolutions.

I Occlusion queries can be used for counting pixels.



Implementation

The implementation uses OpenGL for graphics:
I OpenGL supports programmable graphics hardware (GPUs).
I GPUs are very good at parallel number-crunching tasks, like

rendering a Julia set.

I Mipmap generation reduces images to progressively coarser pixel
resolutions.

I Occlusion queries can be used for counting pixels.



Implementation

The implementation uses OpenGL for graphics:
I OpenGL supports programmable graphics hardware (GPUs).
I GPUs are very good at parallel number-crunching tasks, like

rendering a Julia set.
I Mipmap generation reduces images to progressively coarser pixel

resolutions.

I Occlusion queries can be used for counting pixels.



Implementation

The implementation uses OpenGL for graphics:
I OpenGL supports programmable graphics hardware (GPUs).
I GPUs are very good at parallel number-crunching tasks, like

rendering a Julia set.
I Mipmap generation reduces images to progressively coarser pixel

resolutions.
I Occlusion queries can be used for counting pixels.



Implementation

The implementation uses a few fragment shaders:

I to compute Fatou components and distance estimates;
I to post-process the Fatou component index and distance estimate

into a black and white image of the Julia set;
I to discard pixels below a threshold.



Implementation

The implementation uses a few fragment shaders:
I to compute Fatou components and distance estimates;

I to post-process the Fatou component index and distance estimate
into a black and white image of the Julia set;

I to discard pixels below a threshold.



Implementation

The implementation uses a few fragment shaders:
I to compute Fatou components and distance estimates;
I to post-process the Fatou component index and distance estimate

into a black and white image of the Julia set;

I to discard pixels below a threshold.



Implementation

The implementation uses a few fragment shaders:
I to compute Fatou components and distance estimates;
I to post-process the Fatou component index and distance estimate

into a black and white image of the Julia set;
I to discard pixels below a threshold.



Implementation

Mipmap reduction averages groups of pixels:

0.00 0.25 0.50 0.75 1.00
Box-counting should count if any subpixel was black.
The solution is to threshold the grey level in each mipmap level.



Implementation

Mipmap reduction averages groups of pixels:

0.00 0.25 0.50 0.75 1.00

Box-counting should count if any subpixel was black.
The solution is to threshold the grey level in each mipmap level.



Implementation

Mipmap reduction averages groups of pixels:

0.00 0.25 0.50 0.75 1.00
Box-counting should count if any subpixel was black.

The solution is to threshold the grey level in each mipmap level.



Implementation

Mipmap reduction averages groups of pixels:

0.00 0.25 0.50 0.75 1.00
Box-counting should count if any subpixel was black.
The solution is to threshold the grey level in each mipmap level.



Implementation

Mipmap reduction averages groups of pixels:

0.00 0.25 0.50 0.75 1.00
Box-counting should count if any subpixel was black.
The solution is to threshold the grey level in each mipmap level.
The threshold should between the lightest grey and white.



Implementation

Box-counting is performed with occlusion queries:

I First clear the depth buffer.
I Then draw the Julia set, discarding pixels below a threshold.
I Then draw again, but further away.
I The depth test prevents pixels that were rendered the first time

from being drawn, so only the previously discarded pixels pass.
I The occlusion query counts the number of passed pixels in the

second draw.



Implementation

Box-counting is performed with occlusion queries:
I First clear the depth buffer.

I Then draw the Julia set, discarding pixels below a threshold.
I Then draw again, but further away.
I The depth test prevents pixels that were rendered the first time

from being drawn, so only the previously discarded pixels pass.
I The occlusion query counts the number of passed pixels in the

second draw.



Implementation

Box-counting is performed with occlusion queries:
I First clear the depth buffer.
I Then draw the Julia set, discarding pixels below a threshold.

I Then draw again, but further away.
I The depth test prevents pixels that were rendered the first time

from being drawn, so only the previously discarded pixels pass.
I The occlusion query counts the number of passed pixels in the

second draw.



Implementation

Box-counting is performed with occlusion queries:
I First clear the depth buffer.
I Then draw the Julia set, discarding pixels below a threshold.
I Then draw again, but further away.

I The depth test prevents pixels that were rendered the first time
from being drawn, so only the previously discarded pixels pass.

I The occlusion query counts the number of passed pixels in the
second draw.



Implementation

Box-counting is performed with occlusion queries:
I First clear the depth buffer.
I Then draw the Julia set, discarding pixels below a threshold.
I Then draw again, but further away.
I The depth test prevents pixels that were rendered the first time

from being drawn, so only the previously discarded pixels pass.

I The occlusion query counts the number of passed pixels in the
second draw.



Implementation

Box-counting is performed with occlusion queries:
I First clear the depth buffer.
I Then draw the Julia set, discarding pixels below a threshold.
I Then draw again, but further away.
I The depth test prevents pixels that were rendered the first time

from being drawn, so only the previously discarded pixels pass.
I The occlusion query counts the number of passed pixels in the

second draw.



Implementation

Performance:

I Faster than a CPU-based implementation.
I But it’s still time-consuming.
I The final image took over 5 hours to render.
I Watching the image appear pixel-by-pixel brings back memories of

rendering fractals a couple of decades ago. . .



Implementation

Performance:
I Faster than a CPU-based implementation.

I But it’s still time-consuming.
I The final image took over 5 hours to render.
I Watching the image appear pixel-by-pixel brings back memories of

rendering fractals a couple of decades ago. . .



Implementation

Performance:
I Faster than a CPU-based implementation.
I But it’s still time-consuming.

I The final image took over 5 hours to render.
I Watching the image appear pixel-by-pixel brings back memories of

rendering fractals a couple of decades ago. . .



Implementation

Performance:
I Faster than a CPU-based implementation.
I But it’s still time-consuming.
I The final image took over 5 hours to render.

I Watching the image appear pixel-by-pixel brings back memories of
rendering fractals a couple of decades ago. . .



Implementation

Performance:
I Faster than a CPU-based implementation.
I But it’s still time-consuming.
I The final image took over 5 hours to render.
I Watching the image appear pixel-by-pixel brings back memories of

rendering fractals a couple of decades ago. . .



Results

Fractal Dimension
How Long is a Coast?
Box-Counting Dimension
Examples

Julia Sets
Complex Dynamics
Image Generation
Examples

Fractal Dimension of Julia Sets
Concept
Implementation
Results



Results
dim

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00



Results

But is it accurate?

No.
But it’s pretty close.



Results

But is it accurate?
No.

But it’s pretty close.



Results

But is it accurate?
No.
But it’s pretty close.



Results

Recall the formula I actually used:

dim = 1
2 log2

N2r0

N8r0

r0 = pixel size

This formula is based on simple linear regression of logN against log r .
I tried all possibilities of 0 ≤ s < t ≤ 12 for a regression range between
2sr0 and 2tr0.



Results

Recall the formula I actually used:

dim = 1
2 log2

N2r0

N8r0

r0 = pixel size

This formula is based on simple linear regression of logN against log r .

I tried all possibilities of 0 ≤ s < t ≤ 12 for a regression range between
2sr0 and 2tr0.



Results

Recall the formula I actually used:

dim = 1
2 log2

N2r0

N8r0

r0 = pixel size

This formula is based on simple linear regression of logN against log r .
I tried all possibilities of 0 ≤ s < t ≤ 12 for a regression range between
2sr0 and 2tr0.



Results
t
s 0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

12

When s = 0 and t is
small, the dimension
calculated is wrong
because the Julia set is
too inexact at the
resolution of the pixel
grid.



Results
t
s 0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

12

Increasing s a little
reduces this artifact of
pixel resolution, but t
needs to stay small or
the results go bad
again.



Results
t
s 0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

12

When both s and t are
large, the results are
nonsense.



Results
t
s 0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

12

The best trade-off
seems to be at s = 1
and t = 3, which gives
the formula I actually
used.



The End

The End.




	Fractal Dimension
	How Long is a Coast?
	Box-Counting Dimension
	Examples

	Julia Sets
	Complex Dynamics
	Image Generation
	Examples

	Fractal Dimension of Julia Sets
	Concept
	Implementation
	Results


