Who? Claude Heiland-Allen

When? /dev/art #12 Paris

part one

- introduction
- how to trap the Borg
- visualizing hyperspaces
- symmetry and kaleidoscopes
- fractals and chaos

part one

- whoami
- rules
- underprepared
- survival
- practice
- symbiosis

whoami

who Claude Heiland-Allen
what art science maths
where http://mathr.co.uk
why because it's there

rules

speed slow me down clarity question me interact interrupt me

underprepared

illness mental breakdown
hospital late July to early September
isolated no computers, no internet

survival in hospital

writing notebook and pen
drawing paper, coloured pencils, pens
relaxing poetry, meditation, smoking...

survival outside

written physical address/phone book
memorized important friend/family phone numbers
preplanned regular offline meetings

practice makes perfect

maths symmetry, beauty, simplicity, elegance art smalltalk is too small, say big things science experiments show universal truths

symbiosis is love

yourself look after yourself first
network look out for your family and friends
ecosystem care for your environment

mini recap one

survival the most important thing you can do technique use all means available to express yourself symbiosis guard yourself first before you can care for others

part two

- hypercubes
- hyperspheres
- trapping the Borg

hypercubes

cubes exist in all dimensions

- **OD** point
- 1D line segment
- 2D square
- 3D cube
- 4D tesseract (hypercube)
 - the "content" of a cube is 1.

hypercube in 4D

stereographic

hyperspheres

spheres exist in all dimensions

- **OD** point
- 1D line segment
- 2D circle
- 3D sphere
- **4D** hypersphere

the "content" of a sphere \rightarrow 0 as dimension $\rightarrow \infty$.

hypersphere in 4D

schematic

image (CC-BY) Claudio Rocchini

trapping the Borg

step 1 put your Borg's cube inside a spherical cage

step 2 increase the number of dimensions of space

result the Borg cube is crushed into a point in ∞ -dimensional space

Borg cage in 2D

trapped

part three

- 4D space
- flat space
- spherical space
- hyperbolic space

visualising 4D space

- 386 implemented a renderer using svgalib slow!
- d01234 live hypercube performance with Pd, Gem, GridFlow, etc
 - h4tek exploring 24-cell (a rather special 4D shape)
 - reflex spherical projections of 4D space to 3D space
 - disco slices through a 4D honeycomb (grid) structure

386: wireframe hypercube

d01234: hypercube of cubes

h4tek: fun with 24-cell

reflex: polytopes truncated

disco balls: honeycomb slices

flat space

aka Euclidean space, regular local geometry of this room

triangles interior angles always sum to π .

parallel parallel lines never meet

unique there is exactly 1 parallel to a line through a point

Euclid's axioms can be adjusted, however...

spherical space

like our Earth's surface

triangles interior angles always sum to more than π .

parallel lines that start parallel eventually meet as the world curves

impossible all geodesic lines will eventually meet when extended

Euclid's axioms can be adjusted in another way, too...

hyperbolic space

like nothing on Earth (but maybe the large-scale universe?)

triangles interior angles always sum to less than π .

parallel lines that start parallel get further apart as the world curves

multiple there are ∞ -many parallel lines to a line through a given point

> models of hyperbolic space can be embedded in flat space...

Poincaré disc

wrap the whole universe in a ball with a circular "horizon"

Escher circle limit series

me DVD2473 random walk video DVD

things get smaller to the horizon, but angles are preserved

Escher's Poincaré disc

circular

Circle Limit III by M. C. Escher (1959)

Poincaré half-plane

unwrap the disc into a half-infinite plane with a linear "horizon"

kjhf King James Hyperfuck software

blessings Angels and Candles drawing

things get smaller to the horizon, but angles are preserved

King James Hyperfuck

Angels and Candles

mini recap three

spherical all roads lead to Rome hyperbolic more and more space the further you go

flat our familiar local geometry

part four: symmetry

- 2D Polygons and Tilings
- 3D Platonic solids
- 4D Regular Polytopes

flat space in 2D

groups of reflections

finite ∞-many polygons and star polygons

infinite 17 wallpaper groups

Star Polygon 8/3

Square Tiling

convex regular 3D polyhedra

known since ancient Greek times

convex regular 4D polytopes hardcore maths (see Coxeter's works)

simplex like a tetrahedron

cube like a cube

cross like an octahedron

above in all dimensions, below 4D only

120cell like a dodecahedron

600cell like an icosahedron

24cell like nothing else in any dimension

mini recap four

space pick a spatial curvature
symmetry pick a symmetry group
design elaborate on it to make art

part five

- chaos emerges from feedback
- graphgrow fractal designer
- the Mandelbrot Set

video feedback demo

at this point I try to point my webcam at the projection for video feedback fractal fun...

the aim of this exercise is to show that chaos just **emerges** from a system with enough feedback...

43 / 50

graphgrow

what interactive designer for graph-directed fractal generation.

how connect nodes and move them around, then fractalize the curves

future next generation is outside the browser

bigger Netbehaviour mailing list fractal uses a very large graph...

GraphGrow web example

GraphGrow offline example

the Mandelbrot set

equation

$$z \rightarrow z^2 + c$$

repeated over and over and over

pixel c is the coordinates of the pixel (complex numbers)

iterate z starts at zero

count how long z takes to explode into ∞ .

a bit of the M-Set

mini recap five

order boring, too predictable

chaos "between darkness and wonder"

noise boring, too unpredictable

thanks

- ? questions?
- @ claude@mathr.co.uk

stay tuned for performance...