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Abstract
The well-known distance estimates for escape time fractals whose iteration behaviour near

∞ are like z → az and like z → zp are derived via the spatial derivative of a smooth iteration
count. A distance estimate is derived for hybrid fractals with iteration behaviour like z → azp.

The Sierpiński Carpet: z → az

Figure 1: The Sierpiński carpet. Center 0, zoom 1.

The Sierpiński carpet is a figure consisting of 8 copies of itself, each shrunk by a factor of 1
3 and

arranged around the border of a square (the central cell of the 3× 3 grid is empty). The iterated
function system for constructing the carpet can be turned into an escape time process (see knighty’s
Kaleidoscopic Escape Time IFS1), whereby an input point z is repeatedly transformed (including
scaling by 3 at each step) until z →∞.

The transformations have finite translations, so the behaviour near∞ is like z → 3z (the translations
are insignificant). Fix a large R, and count the iterations n where zn is the first iterate such R ≤ |zn|.
Start iterating from z0 at the pixel coordinates.

Now R ≤ |zn| < 3R, because if 3R ≤ |zn| then R ≤ |zn−1| by the behaviour near ∞, which
contradicts the assumption that zn is the first iterate to exceed R. The iteration count n tells how
quickly |z| has exceeded R, and the size of |z| at this iteration can be used to give a fractional

1http://www.fractalforums.com/Sierpiński-gasket/kaleidoscopic-(escape-time-ifs)/
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iteration count: define f by R ≤ |zn| = 3fR ≤ 3R, then f = (log |zn|− logR)/ log 3 and the smooth
iteration count is m = n+ 1− f .

Approaching the Sierpiński carpet fractal boundary, the smooth iteration count increases without
limit. The rate of increase is linked to the closeness to the boundary: an estimate of the distance is
inversely proportional to the spatial derivative of the smooth iteration count. The spatial derivative
of m = n + 1 − f is equal to the spatial derivative of −f almost everywhere (the steps between
dwell bands are a set of measure zero), so

d = |zn| log 3
∂zn

∂c

. (1)

For colouring images use d/ε where ε is the distance between neighbouring pixels: when this value
is less than 1 the pixel contains the fractal, when the value is greater than 1 the pixel does not
contain the fractal.

The same arguments apply in the general case when z → az near ∞, with a > 1. The smooth
iteration count is

m = n+ 1− log |zn| − logR
log a , (2)

the renormalized smooth iteration count is derived by differentiating w.r.t. R, taking the limit as
R→∞, then integrating again:

µ = n− log |zn|
log a +K (3)

where K is an arbitrary constant of integration, and the distance estimate is

d = |zn| log a
∂zn

∂c

. (4)

The Mandelbrot Set: z → zp

Figure 2: The Mandelbrot set. Center − 3
4 , zoom

4
5 .

The Mandelbrot set M is defined by iterations over the complex numbers C of z → z2 + c. It can
be shown that if |z| > max {|c|, 2} then z →∞, and a variant on the argument shows all |c| > 2
are outside M . Thus M is finite.
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The addition is small for c near M , so the behaviour near ∞ is like z → z2 (the translation is
insignificant). Fix a large R, and count the iterations n where zn is the first iterate such that
R ≤ |zn|. Start the iterations from z0 = 0.

Now R ≤ |zn| < R2, because if R2 ≤ |zn| then R ≤ |zn−1| by the behaviour near ∞, which
contradicts the assumption that zn is the first iterate to exceed R. The iteration count n tells how
quickly |z| has exceeded R, and the size of |z| at this iteration can be used to give a fractional
iteration count: define f by R ≤ |zn| = R2f

< R2, then f = log(log |zn|/ logR)/ log 2 and the
smooth iteration count is m = n+ 1− f .

The renormalized smooth iteration count is derived by differentiating w.r.t. R, taking the limit as
R→∞, then integrating again:

µ = n− log log |zn|
log 2 +K (5)

where K is an arbitrary constant of integration.

Approaching the Mandelbrot set fractal boundary, the smooth iteration count increases without
limit. The rate of increase is linked to the closeness to the boundary: an estimate of the distance is
inversely proportional to the spatial derivative of the smooth iteration count. The spatial derivative
of µ = n − g + K is equal to the spatial derivative of −g almost everywhere (the steps between
dwell bands are a set of measure zero), so the distance estimate is

d = |zn| log |zn| log 2
∂zn

∂c

. (6)

For colouring images use d/ε where ε is the distance between neighbouring pixels: when this value is
less than 1

2 the pixel contains the fractal, when the value is greater than 2 the pixel does not contain
the fractal. The factor of 4 between these two figures is due to the Koebe 1

4 theorem, which bounds
the distortion of conformal maps, detailed discussion is beyond the scope of this document. See
Yumei Dang, Louis H. Kauffman and Dan Sandin, “Hypercomplex Iterations: Distance Estimation
and Higher Dimensional Fractals”2.

The same arguments apply in the general case when z → zp near ∞, with p > 1. The smooth
iteration count is

m = n+ 1−
log log |zn|

log R

log p , (7)

the renormalized smooth iteration count is

µ = n− log log |zn|
log p +K, (8)

and the distance estimate is
d = |zn| log |zn| log p

∂zn

∂c

. (9)

Hybrid Fractals: z → azp

One can make a hybrid of two fractals by interleaving their iteration steps. A hybrid of a fractal
that escapes like z → az with a fractal that escapes like z → zp will escape like z → azp.

Fix a large R, and count the iterations n where zn is the first iterate such that R ≤ |zn|. Start
the iterations from z0 = 0 and interleave the exponential iterations first with the multiplicative
iterations second.

Now R ≤ |zn| < aRp, because if aRp ≤ |zn| then R ≤ |zn−1| by the behaviour near ∞, which
contradicts the assumption that zn is the first iterate to exceed R. The iteration count n tells how

2https://www.evl.uic.edu/hypercomplex/html/book/book.pdf
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Figure 3: Mandelbrot set / Sierpiński carpet hybrid. The Sierpiński carpet is implemented with | · |
folding. Center 0, zoom 4

5 .

quickly |z| has exceeded R, and the size of |z| at this iteration can be used to give a fractional
iteration count.

Unfortunately defining f by the simple R ≤ |zn| = afRpf

< aRp does not work as it isn’t smooth.
One can see this by differentiating with respect to f :

∂

∂f
afRpf

= afRpf (
log a+ pf log p logR

)
(10)

Setting f = 1 now gives a different value to setting f = 0 after making the substitution R→ aRp.

By Schröder 1870, a smooth interpolant is

R ≤ |zn| = a
pf −1
p−1 Rpf

< aRp (11)

Solving for f gives

f = log
(

log a+ (p− 1) log |zn|
log a+ (p− 1) logR

)
/ log p (12)

and the smooth iteration count is m = n+ 1− f . The renormalized smooth iteration count is found
by differentiating w.r.t. R, taking the limit as R→∞ before integrating again:

µ = n− log(log a+ (p− 1) log |zn|)
log p +K (13)

where K is an arbitrary constant of integration. As before, the distance estimate is inversely
proportional to the spatial derivative:

d = |zn| log p (log a+ (p− 1) log |zn|)
∂zn

∂c (p− 1)
(14)

If it is known that an iterate escapes like z → azp but the values of the constants are not known,
they can be estimated numerically by performing two more iterations after escape:

p = log |zn+2| − log |zn+1|
log |zn+1| − log |zn|

(15)

a = log |zn+1| − p log |zn| (16)
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Generalizations
The maths carries through without any difficulty to higher-dimensional Menger sponge, Mandelbulb,
etc. Note that non-(complex)-analytic functions need general Jacobian matrices of derivatives rather
than a single (complex) derivative as used for the Mandelbrot set. A convenient implementation
technique is using vectors of extended dual numbers (with 2 or more orthogonal dual parts
corresponding to the dimension of the space) for automatic differentiation.

The form z → azp, together with the earlier special forms for p = 1 and a = 1, are general enough
to handle all polynomial iterations, because near ∞ the highest power term dominates. Hybrids of
multiple polynomial iterations are polynomial iterations themselves: for example if A : z → zp and
B : z → az then B ◦ A : z → azp, A ◦ B : z → apzp, B ◦ A ◦ A : z → az2p, B ◦ B ◦ A : z → a2zp,
and so on. Any eventually-repeating hybrid can be constructed, provided that the escape radius
R is large enough compared with the domain of evaluation (the region of c values) such that the
non-repeating part is over by the time the first zn escapes.

References
Renormalizing the Mandelbrot Escape

The scale-dependence on the escape radius can be (partly) removed by differentiating
the above formula with respect to the escape radius, taking the limit to infinity, and
then integrating the first term of the resulting differential equation. The result is a
renormalized, scale-independent, quasi-integral-valued iteration count. – Linas Vepstas
(1997) “Renormalizing the Mandelbrot Escape” https://linas.org/art-gallery/escape/
escape.html

M-Set Derivatives
The “distance estimator” is the inverse infinitesimal flow of the iteration number.
It gets this name because it provides a rough estimate of how far away an exterior
point is from the boundary of the M-Set. The smooth (real-valued) iteration count
is given by µ = n + 1 − log(log(|z|))/ log 2, as demonstrated in the Escape Theory
Room (which is, in turn, the logarithm of the Douady-Hubbard potential). Taking
the derivative of µ w.r.t. c we get dµ/dc = d|z|/dc/(|z| log |z| log 2). The “distance
estimator” is one over this quantity. – Linas Vepstas (1997, 2000) “M-Set Derivatives”
http://linas.org/art-gallery/mderive/mderive.html

Ueber iterirte Functionen
Setzt man z.B.:

φ(z) = azn,

so findet man leicht direct:
φr(z) = a

nr−1
n−1 znr

. (17)

– Ernst Schröder (1870). “Ueber iterirte Functionen”. Math. Ann. 3 (2): 296–322.
doi:10.1007/BF01443992.
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