
[DRAFT#1] Lyapunov Space of Coupled FM Oscillators

Claude Heiland-Allen
claude@mathr.co.uk

Abstract

I consider two coupled oscillators, each modulating
the other’s frequency. This system is governed by
four parameters: the base frequency and modulation
index for each oscillator. For some parameter values
the system becomes unstable. I use the Lyapunov
exponent to measure the instability. I generate im-
ages of the parameter space, implementing the num-
ber crunching on graphics hardware using OpenGL.
I link the mouse position over the displayed image
to realtime audio output, creating an audio-visual
browser for the 4D parameter space.

Keywords

chaos, DSP, GPU

1 Introduction

In my 2005 Soft Rock EP and 2006 Soft Rock

DVD I explored the transitions between or-
der and chaos in coupled FM oscillators, im-
plemented in Pure-data using GridFlow for vi-
sualization of the output waveforms over time.
More recently I developed the idea to map the
parameter space and in performance choose pa-
rameters on the basis of desired sound output.
I used one Pure-data batch mode instance per

CPU core each sending analysis data to a real-
time Pure-data instance. The analysis used var-
ious methods (including FFT for spectral statis-
tics and the sigmund external for pitch track-
ing) to classify points into pitched (ordered, sta-
ble) or unpitched (chaotic, unstable) with mea-
sures of distortion or noisiness. Sadly this ap-
proach proved impractical as it achieved only
tens of pixels per second, even with a fast multi-
core CPU, and porting these signal analysis
algorithms to massively-parallel programmable
graphics hardware seemed to be too difficult.
Seeing a bifurcation diagram produced by an

analogue Moog synthesizer [Slater, 1998] and
Lyapunov fractals [Elert, 2007], I decided to ap-
ply the latter technique to coupled FM oscilla-
tors in the digital realm.

2 Formulation

2.1 Coupled FM Oscillators

Figure 1: Coupled FM oscillators in Pure-data.

I formulate the two coupled oscillators in Fig-
ure 1 which each modulate the other’s frequency
by a mutual recurrence relation:

xn+1 = %(xn + I(fx +mx cos(2πyn−d)))

yn+1 = %(yn + I(fy +my cos(2πxn−d)))
(1)

where

%(t) = t− ⌊t⌋, I(t) =
440

SR
2

t−69

12

Here xn, yn is the phase of each oscillator at
time step n, d is a delay measured in samples,
fx, fy is the base frequency of each oscillator as
a MIDI note number, and mx, my is the mod-
ulation index of each oscillator as a MIDI note
number.
I’ll write the four-dimensional parameter

space vector a = (fx, fy,mx,my), and the
(2d + 2)-dimensional phase space vector z =
(xn, yn, xn−1, yn−1, . . . , xn−d, yn−d). I’ll fix d =
1 and SR = 48000.

2.2 Lyapunov Exponents

The Lyapunov exponent λ measures divergence
in phase space:

|z1(t)− z0(t)| ≈ eλt |z1(0)− z0(0)|

λ = lim
t→∞

lim
z1(0)→z0(0)

1

t
log

|z1(t)− z0(t)|

|z1(0)− z0(0)|
(2)

An attracting orbit has λ < 0 and a divergent
(chaotic) orbit has λ > 0.
The wrapping of phase into [0, 1) requires a

modified norm:

|z|% =

√

∑

i

min(%(zi), 1−%(zi))2

I’ll compute approximations to λ in Equation 2
by iterations of Equation 1.

2.3 Viewing Planes

An image is 2D, which requires choosing a sub-
set of the 4D parameter space to visualize. I
chose two particular planes:

A+(a0, r0) = a0 + r0







1 0
1 0
0 1
0 1







(

u
v

)

A−(a0, r0) = a0 + r0







1 0
−1 0
0 1
0 −1







(

u
v

)

(3)
where (u, v) is the coordinates of the pixel, a0
is the centre of the view, and r0 is the radius of
the view.

3 GPU Implementation

I implemented imaging of the Lyapunov space
of coupled FM oscillators on graphics hardware
using OpenGL and OpenGL Shading Language.

3.1 Computation Overview

To render an image I first fill a texture with
(u, v) coordinates using a framebuffer object
and a fragment shader. I copy this texture to
a vertex buffer object, interleaving the initial
phase space vector z = (0, 0, 0, 0) and Lyapunov
exponent statistics vector l = (0, 0, 0, 0).

Using a vertex shader, I repeatedly compute
rough estimates of the Lyapunov exponent us-
ing Equation 2 by perturbing z1(0) = z0(0) + δ
with δ small and iterating Equation 1 t = 256
times, having calculated a from (u, v) using

Equation 3. I discard the first few repetitions
and those resulting in −∞, and accumulate the
results (sum, count) in l.
Between each repetition I compact the work-

ing set using a geometry shader, plotting
points whose mean Lyapunov exponent esti-
mate changed very little during the previous
step. I keep only the others to refine further.
This directs the computational effort on the
points that need it most: those that are slow
to converge.

3.2 Noise Increases Stability

At the end of each repetition I keep z1 instead
of z0. This effectively adds a small amount
of noise, counter-intuitively increasing stability.
Noise allows more of the phase space to be ex-
plored, and makes it more likely for the per-
turbed orbit to reach an attracting part of the
phase space.

3.3 Dither Increases Quality

To reduce grid sampling artifacts, I perturb
(u, v) within the bounds of its corresponding
pixel before calculating the a parameter vector
for each repetition.

4 Interactive Browsing

4.1 Zoomable Visual Interface

I implemented the graphical user interface us-
ing GLUT. Clicking with the mouse zooms the
view about the point clicked on. The left but-
ton (or scroll up) zooms in, the right button (or
scroll down) zooms out, with the middle button
centering the view on the target point. Press-
ing the TAB key toggles between the A+ and
A− planes in Equation 3, and F11 toggles full
screen operation.
To ensure user interface responsiveness, the

computation is amortized over several frames.
I divide the target frame period by the mea-
sured time for one repetition to compute how
many repetitions to perform each frame. The
repetitions-per-frame increases as the working
set becomes smaller.

4.2 Realtime Audio Output

While the GPU simulates and analyses one os-
cillator pair per pixel, the CPU simulates one
oscillator pair with a determined from the pixel
under the mouse pointer. I move the mouse
pointer to hear what different parts of the image
sound like. The image acts as a map, a refer-
ence frame for chosing parameters to audition.
I implemented the audio using JACK.

(a) A+((120, 120, 0, 0), 72) (b) A
−
((120, 120, 0, 0), 72)

(c) A+((95.2, 95.2, 32.6, 32.6), 4.5) (d) A
−
((95.2, 95.2, 32.6, 32.6), 4.5)

(e) A+((151.57, 151.57, 1.64, 1.64), 0.07) (f) A
−
((151.57, 151.57, 1.64, 1.64), 0.07)

(g) A
−
((117.0, 148.4, 20.4, 2.7), 1.8) (h) A

−
((141.46, 146.22, 22.76, 0.27), 0.14)

(i) A+((103.65, 108.41, 33.42, 10.93), 0.14) (j) A
−
((89.8, 137.5,−17.5,−7.1), 3.7)

Figure 2: Example images. Darker shades are stable, lighter shades chaotic.

5 Examples

Figure 2(a) is the initial view on starting the
interactive browser. Low frequencies to the
left are stable even at high modulation index
away from the central axis. High frequencies to
the right become chaotic at progressively lower
modulation index. (b) shows the A− plane at
the same location. When fx = fy and mx = my

the A+ plane has mirror symmetry about its
horizontal axis, and the A− plane has two-fold
rotational symmetry about its centre.
(c) shows bands alternating between stability

and chaos. The bands become distorted and
collapse as the modulation index and frequency
increase. (d) shows its A− plane, bands become
rings.
When the frequency is greatly increased, the

shapes become more intricate. (e) exhibits spi-
rals of stability, with similar spirals in the A−

plane in (f).
Breaking the symmetry and setting fx 6= fy

or mx 6= my leads to diverse forms. In partic-
ular (i) has shapes that resemble those of Lya-
punov space images of the logistic map.

6 Conclusions

6.1 OpenGL Issues

The current implementation is hardcoded with
delay d = 1 and would be very awkward to
generalize. OpenGL architecture limits each
vertex attribute to four components with the
maximum number of attributes typically lim-
ited to sixteen. This totals 64 floats per ver-
tex, 6 of which are needed for the pixel coor-
dinates and Lyapunov exponent statistics accu-
mulation. Therefore using OpenGL imposes a
limit d < 28. For comparison my original ex-
periments in Soft Rock EP used Pure-data’s de-
fault block size of 64, with d = 32. Moreover,
increasing d increases video memory consump-
tion. With the maximum d = 27, browsing at
1920× 1080 resolution would require over 1GB.
My future work on this project will look into

using OpenCL, which provides a heterogenous
CPU and GPU computation framework. I hope
it will avoid the inherent awkwardness of abus-
ing OpenGL shaders to perform calculations.

6.2 Audio Issues

While the implementation works as intended,
unfortunately with d = 1 the sound is nowhere
near as rich and varied as with d = 32. With
small d there is much more very high frequency
content in interesting-looking regions. I’ve not

found any regions of the parameter space with
both interesting appearance and palatable au-
dio frequencies at d = 1, while with high d there
are plenty of parameters that generate sounds
that fluctuate intermittently between smooth
tones and chaotic noise. But as I haven’t been
able to visualize with high d I can’t be confident
that their neighbourhoods will look as interest-
ing as they sound.
Unfortunately, heavy use of the GPU as in

the interactive browser can block the operating
system for too long and cause audible JACK
xruns. This somewhat dampens my hopes of
using the browser in a live situation.

6.3 Pretty Pictures

Despite these shortcomings, I think the images
at least are beautiful. I plan to render a selec-
tion at high resolution and print postcards and
posters. I’ll divide the image plane into tiles and
compute each tile in succession, finally combin-
ing the pieces into one large picture to makes it
computationally feasible.
There is also scope for video work, moving

and rotating the viewing plane through the 4D
parameter space, with different shapes forming
and collapsing over time. My rough benchmarks
take 5-10 seconds per frame at 1920 × 1080, so
for now I’ll wait until faster cheaper graphics
cards become available.

7 Acknowledgements

8 FIXME

Needs links to Soft Rock EP and DVD. Needs
references for OpenGL and GLSL.
Needs more examples of Lyapunov exponents

with orbit diagrams etc. Needs an example of
the more direct computation of λ for the logis-
tic equation and explanation of why that ap-
proach isn’t available (phase space dimension
> 1 means derivatives are not simple).
Needs an overview of the OpenGL pipeline for

those not familiar with it (diagram of shaders
with inputs and outputs, vertex geometry frag-
ment, transform feedback, what is a vbo fbo
texture, etc).
Should the Computation Overview section

use pseudocode instead of prose?
Needs links to code + example audio / video.

References

Glenn Elert. 2007. The Chaos Hypertextbook.

Dan Slater. 1998. Chaotic sound synthesis.
Computer Music Journal, 22(2):12–19.

