[DRAFT#2] Lyapunov Space of Coupled FM Oscillators

Claude Heiland-Allen
claude@mathr.co.uk

Abstract

I consider two coupled oscillators, each modulating
the other’s frequency. This system is governed by
four parameters: the base frequency and modulation
index for each oscillator. For some parameter values
the system becomes unstable. I use the Lyapunov
exponent to measure the instability. I generate im-
ages of the parameter space, implementing the num-
ber crunching on graphics hardware using OpenGL.
I link the mouse position over the displayed image
to realtime audio output, creating an audio-visual
browser for the 4D parameter space.

Keywords

chaos, DSP, GPU

1 Introduction

In Soft Rock EP [ClaudiusMaximus, 2005] and
Soft Rock DVD [ClaudiusMaximus, 2006] I ex-
plored the transitions between order and chaos
in coupled FM oscillators, implemented in Pure-
data using GridFlow for visualization of the out-
put waveforms over time. More recently I devel-
oped the idea to map the parameter space on a
perceptually relevant level and in performance
choose parameters on the basis of desired sound
character.

Seeing a bifurcation diagram produced by an
analogue Moog synthesizer [Slater, 1998] and
Lyapunov fractals [Elert, 2007], I decided to ap-
ply the latter technique to coupled FM oscilla-
tors in the digital realm.

Figure 1: Example output.

I had originally experimented with one Pure-
data batch mode instance per CPU core each
sending analysis data to a realtime Pure-data
instance. The analysis used various methods
(including FFT for spectral statistics and the
sigmund external for pitch tracking) to clas-
sify points into pitched (ordered, stable) or un-
pitched (chaotic, unstable) with measures of
distortion or noisiness. Sadly this approach
proved impractical as it achieved only tens
of pixels per second, even with a fast multi-
core CPU, and porting these signal analysis
algorithms to massively-parallel programmable
graphics hardware seemed to be too difficult.

2 Formulation

2.1 Coupled FM Oscillators

‘table x 2 table y 2 block~ 2

il;abraceive~ ?i tabreceive~ x
i L i
Enutletml out let~

pd receive
[[
1 | 1
e NF W M| (W 'I:r: m_
F '.- .r 1
+~ pNE £_3 1+~ i £_y
- T . L

mtof~ mtof~
o85Cc "': OEC~
L -
pd sand
inlet~ inlat~|
P

e 1 — =k s
tabsand~ '.ll'.l tabsand~ ¥

Figure 2: Coupled FM oscillators in Pure-data.

Consider the two coupled oscillators in Figure 2.
I formulate this into a mutual recurrence rela-
tion:

Tnt1 = %o(xn + I(fz + my cos(2mYyn—_q)))

Y1 = To(gn + 1(f, +my cos(2nzn_a)))

where

_ 0
SR

t—69
2712

%(t)=t—[t], 1)

Here z,, y, is the phase of each oscillator at
time step n, d is a delay measured in samples,
fz, [y is the base frequency of each oscillator as
a MIDI note number, and m,, m, is the mod-
ulation index of each oscillator as a MIDI note
number.

I'll write the four-dimensional parameter
space vector

a = (fa:afyamxamy)

and the (2d+2)-dimensional phase space vector

z = (xna Yny Tn—1,Yn—1,--+Tn—d, yn—d)
with sample rate SR = 48000. I'll fix d =1 for
reasons explained in Section 5.1.

2.2 Lyapunov Exponents

A good introduction is found in Chapter 4.3
Lyapunov Ezponent [Elert, 2007]. The defini-
tion is covered in Chapter 13.7 Liapounov ez-
ponents and entropies [Falconer, 2003] and also
related to measures of fractal dimension.

The Lyapunov exponent A measures diver-
gence in phase space:

|21(t) — 20(t)] = e 21(0) — 2(0))|

|21(t) — 20(t)]

200 — 2] ?

A= lim
t— 00
21 (O) — Z()(O)

1
|
o8

An attracting orbit has A < 0 and a divergent
(chaotic) orbit has A > 0.

The wrapping of phase into [0,1) requires a
modified norm:

2|, = \/Z min(%(2),1 — %(2;))?2

2.3 Viewing Planes

An image is 2D, which requires choosing a sub-
set of the 4D parameter space to visualize. I
chose two particular planes:

A+(CLO,T0) =ag+ 7o

OO =M= OO

A_(ao,T‘o) = Qg + T0

_—_0 0 == OO

3)
where (u,v) is the coordinates of the pixel, ag
is the centre of the view, and rq is the radius of
the view.

3 Results
3.1 Examples

Figure 3(a) shows the initial view on starting
the interactive browser. Low frequencies to the
left are stable even at high modulation index
away from the central axis. High frequencies to
the right become chaotic at progressively lower
modulation index. (b) shows the A_ plane at
the same location. (c) shows bands alternat-
ing between stability and chaos. The bands be-
come distorted and collapse as the modulation
index and frequency increase. (d) shows its A_

(a) A4((120,120,0,0),72)

plane, bands become rings. When the frequency
is greatly increased, the shapes become more
intricate. (e) exhibits spirals of stability, with
similar spirals in the A_ plane in (f).

When f, = f, and m; = m, the A, plane
has mirror symmetry about its horizontal axis,
and the A_ plane has two-fold rotational sym-
metry about its centre. Breaking the symmetry
and setting f; # fy, or my # my leads to di-
verse forms, shown in Figure 4. In particular
Figure 4(c) has shapes that resemble those of
Lyapunov space images of the logistic map.

(b) A_((120,120,0,0),72)

A Swy N
(f) A_((151.57,151.57,1.64,1.64),0.07)

Figure 3: Example images. Darker shades are stable, lighter shades chaotic.

3.2 Interactive Explorer

I implemented an interactive audio-visual ex-
plorer for the parameter space of coupled FM
oscillators. Clicking with the mouse zooms the
view about the clicked point. The left button
(or scroll up) zooms in, the right button (or
scroll down) zooms out, the middle button cen-
ters the view on the target point. Pressing the
TAB key toggles between the A and A_ planes
| in Equation 3, and F11 toggles full screen oper-
, PR ation.
(a) A_((117.0,148.4,20.4,2.7), 1.8) While the GPU simulates and analyses one
i oscillator pair per pixel, the CPU simulates one
oscillator pair with a determined from the pixel
under the mouse pointer. The image acts as a
map, a reference frame for chosing parameters
to audition by moving the mouse.

4 Implementation

I used OpenGL [Segal, 2013] and OpenGL
Shading Language [Kessenich, 2013], with
GLUT [Kilgard, 1996] for windowing and input
event handling, and JACK [Davis, 2013] for au-
dio output.

_f.

b) A_((141.46,146.22, 22.76,0.27),0.14)

4.1 Computation Overview

To render an image I first fill a texture with
(u,v) coordinates using a framebuffer object
and a fragment shader. I copy this texture to
a vertex buffer object, interleaving the initial
phase space vector z = (0,0,0,0) and Lyapunov
exponent statistics vector [= (0,0,0,0).

Using a vertex shader, I repeatedly compute
rough estimates of the Lyapunov exponent us-
ing Equation 2 by perturbing z1(0) = zo(0) + ¢
with § small and iterating Equation 1 ¢t = 256
times, having calculated a from (u,v) using
(c) A+((103.65,108.41,33.42,10.93),0.14) Equation 3. T discard the first few repetitions

A LT _ and those resulting in —oo, and accumulate the
Ll 1
AT Vi
' f

results (sum, count) in /.

Between each repetition I compact the work-
ing set using a geometry shader, plotting
points whose mean Lyapunov exponent esti-
mate changed very little during the previous
step. I keep the others to refine further, direct-
ing the computational effort on the points that
need it most: those slow to converge.

To ensure user interface responsiveness, the
computation is amortized over several frames.
. I divide the target frame period by the mea-
) sured time for one repetition to compute how
many repetitions to perform that frame. The
repetitions-per-frame increases as the working
set becomes smaller.

vig 'l
ld' LW lt { Fil
(d) A_((89.8,137.5, —17.5, —7.1),3.7

Figure 4: More examples.

4.2 Noise Increases Stability

At the end of each repetition I keep z; instead
of zg. This effectively adds a small amount
of noise, counter-intuitively increasing stability.
Noise allows more of the phase space to be ex-
plored, and makes it more likely for the per-
turbed orbit to reach an attracting part of the
phase space.

4.3 Dither Increases Quality

To reduce grid sampling artifacts, I perturb
(u,v) within the bounds of its corresponding
pixel before calculating the a parameter vector
for each repetition.

5 Conclusions
5.1 OpenGL Issues

The current implementation is hardcoded with
delay d = 1 and would be very awkward to
generalize. OpenGL architecture limits each
vertex attribute to four components with the
maximum number of attributes typically lim-
ited to sixteen. This totals 64 floats per ver-
tex, 6 of which are needed for the pixel coor-
dinates and Lyapunov exponent statistics accu-
mulation. Therefore using OpenGL imposes a
limit d < 28. For comparison my original ex-
periments in Soft Rock EP used Pure-data’s de-
fault block size of 64, with d = 32. Moreover,
increasing d increases video memory consump-
tion. With the maximum d = 27, browsing at
1920 x 1080 resolution would require over 1GB.
My future work on this project will look into
using OpenCL, which provides a heterogenous
CPU and GPU computation framework. I hope
it will avoid the inherent awkwardness of abus-
ing OpenGL shaders to perform calculations.

5.2 Audio Issues

While the implementation works as intended,
with d = 1 the sound is nowhere near as rich
and varied as with d = 32. With small d there
is much more very high frequency content in
interesting-looking regions. I’ve not found any
regions of the parameter space with both in-
teresting appearance and palatable audio fre-
quencies at d = 1, while with high d there are
parameters that generate sounds that fluctuate
intermittently between smooth tones and noise.
I haven’t been able to visualize with high d to
know whether their neighbourhoods look as in-
teresting as they sound.

Unfortunately, heavy use of the GPU in the
interactive browser can block the operating sys-
tem for too long and cause audible glitches

(JACK xruns). This situation may change as
free drivers continue to improve, allowing use of
the browser in a live situation.

5.3 Pretty Pictures

Despite these shortcomings, I think the images
look good. I plan to render a selection at high
resolution and print postcards and posters. For
huge images I divide the image plane into tiles
and compute each tile in succession, finally com-
bining the pieces into one large picture.

There is also scope for video work, moving
and rotating the viewing plane through the 4D
parameter space, with different shapes forming
and collapsing over time. My rough benchmarks
take 5-10 seconds per frame at 1920 x 1080, so
for now I’ll wait until faster cheaper graphics
cards become available.

6 Acknowledgements

Thanks to Rob Canning, Adnan Hadzi and
Joanne Seale for their helpful feedback.

References

ClaudiusMaximus. 2005. Soft Rock EP.
http://archive.org/details/
ClaudiusMaximus_-_Soft_Rock_EP.

ClaudiusMaximus. 2006. Soft Rock DVD.
http://archive.org/details/
ClaudiusMaximus_-_Soft_Rock_DVD.

Paul Davis. 2013. The JACK Audio Connec-
tion Kit. http://jackaudio.org.

Glenn Elert. 2007. The Chaos Hypertextbook.
http://hypertextbook.com/chaos/.

Kenneth Falconer. 2003. Fractal Geometry:
Mathematical Foundations and Applications,
Second Edition. Wiley.

John Kessenich. 2013. The
OpenGL Shading Language.
http://www.opengl.org/registry/doc/
GLSLangSpec.4.30.8.pdf.

Mark J. Kilgard. 1996. The OpenGL Utility
Toolkit (GLUT) Programming Interface.
http://www.opengl.org/documentation/
specs/glut/glut-3.spec.pdf.

Mark Segal. 2013. The OpenGL
Graphics System: A Specification.
http://www.opengl.org/registry/doc/
glspec43.core.20130214.pdf.

Dan Slater. 1998. Chaotic Sound Synthesis.
Computer Music Journal, 22(2):12-19.

