mandelbla

Mandelbrot set via bivariate linear approximation.

theory

mandelbrot set:
High precision reference orbit:

$$
Z_{m+1}=Z_{m}^{2}+C
$$

m starts at 0 with $Z_{0}=0$.
perturbation
Low precision deltas relative to high precision orbit. Pixel orbit $Z_{m}+z_{n}, C+c$.

$$
z_{n+1}=2 Z_{m} z_{n}+z_{n}^{2}+c
$$

m and n start at 0 with $z_{0}=0$.
rebasing
Rebasing to avoid glitches: when

$$
\left|Z_{m}+z_{n}\right|<\left|z_{n}\right|
$$

replace z_{n} with $Z_{m}+z_{n}$ and reset the reference iteration count m to 0 .
Reference: https://fractalforums.org/fractal-mathematics-and-new-theories/2 8/another-solution-to-perturbation-glitches $/ 4360 / \mathrm{msg} 29835 \# \mathrm{msg} 29835$

bivariate linear approximation

When Z is large and z is small, the iterations can be approximated by bivariate linear function;

$$
z \rightarrow A z+B c
$$

This is valid when

$$
|Z+z| \gg|z|
$$

which implies

$$
|z| \ll(|Z|-|B \| c|) /(|A|+1)
$$

by ball interval arithmetic.
single step

$$
\begin{gathered}
A=2 Z_{m} \\
B=1 \\
R=\max \left\{0,0.001 \frac{\left|Z_{m}\right|-|B||c|}{|A|}\right\}
\end{gathered}
$$

The "fudge factor" ≈ 0.001 seems to work but is not rigourous ...

merging steps

If T_{x} skips l_{x} iterations from iteration m_{x} when $|z|<R_{x}$ and T_{y} skips l_{y} iterations from iteration $m_{x}+l_{x}$ when $|z|<R_{y}$ then $T_{z}=T_{y} \circ T_{x}$ skips $l_{x}+l_{y}$ iterations from iteration m_{x} when $|z|<R_{z}$:

$$
\begin{gathered}
z \rightarrow A_{y}\left(A_{x} z+B_{x} c\right)+B_{y} c=A_{z} z+B_{z} c \\
A_{z}=A_{y} A_{x} \\
B_{z}=A_{y} B_{x}+B_{y} \\
R_{z}=\min \left\{R_{x}, \frac{R_{y}-\left|B_{x}\right||c|}{\left|A_{x}\right|}\right\}
\end{gathered}
$$

table construction

Suppose the reference has M iterations. Create M BLAs each skipping 1 iteration (this can be done in parallel). Then merge neighbours without overlap to create $\left\lceil\frac{M}{2}\right\rceil$ each skipping 2 iterations (except for perhaps the last which skips less). Repeat until there is only 1 BLA skipping $M-1$ iterations: it's best to start the merge from iteration 1 because reference iteration 0 always corresponds to a non-linear perturbation step as $Z=0$.

The resulting table as $O(M)$ elements.

table lookup

Find the BLA starting from iteration m that has the largest skip l satisfying $|z|<R$. If there is none, do a perturbation iteration. Check for rebasing opportunities after each BLA application or perturbation step.
error bounds
the above has a conceptual flaw, needing an arbitrary "fudge factor"
remainder bound
Taylor remainder provides rigourous bounds:

$$
\begin{gathered}
z_{n+l}=A_{m, l} z_{n}+B_{m, l} c+D_{m, l} z_{n}^{2}+E_{m, l} z_{n} c+F_{m, l} c^{2}+O\left(\cdot{ }^{3}\right) \\
R_{m, l}=\max \left\{\left|D_{m, l}\right|, \frac{\left|E_{m, l}\right|}{2},\left|F_{m, l}\right|\right\} \\
z_{n+l}=A_{m, l} z_{n}+B_{m, l} c+a_{z_{n, m, l}} \\
\left|a_{z_{n, m, l}}\right|<R_{m, l}\left(\left|z_{n}\right|^{2}+\left|z_{n}\right||c|+|c|^{2}\right)
\end{gathered}
$$

$a_{z_{n, m, l}}$ is absolute error in z_{n+l}. Relative error is

$$
e_{z_{n, m, l}}=\frac{a_{z_{n, m, l}}}{z_{n+l}}
$$

single step

$$
\begin{aligned}
l & =1 \\
A & =2 Z_{m} \\
B & =1 \\
D & =1 \\
E & =0 \\
F & =0
\end{aligned}
$$

merging steps

$$
\begin{aligned}
m_{y} & =m_{x}+l_{x} \\
m_{y \circ x} & =m_{x} \\
l_{y \circ x} & =l_{x}+l_{y} \\
A_{y \circ x} & =A_{y} A_{x} \\
B_{y \circ x} & =A_{y} B_{x}+B_{y} \\
D_{y \circ x} & =A_{y} D_{x}+D_{y} A_{x}^{2} \\
E_{y \circ x} & =A_{y} E_{x}+2 D_{y} A_{x} B_{x}+E_{y} A_{x} \\
F_{y \circ x} & =A_{y} F_{x}+D_{y} B_{x}^{2}+E_{y} B_{x}+F_{y}
\end{aligned}
$$

backward error

Suppose e_{c} is absolute error in c. For an accurate image, we want bounds on z such that e_{z}, the absolute error introduced into z by the bilinear approximation, corresponds to $\left|e_{c}\right|<k$, where k is the pixel spacing. As we will be chaining multiple transformations, better to scale k by a small number so that $\left|e_{c}\right|<k$ still holds after all of them: doing L transformations means $\left|e_{c}\right|<\frac{k}{L}$ is certainly good enough.
The absolute error in z is the remainder bound multiplied by $O\left({ }^{2}\right)$:

$$
e_{z}=\max \left\{|D|, \frac{|E|}{2},|F|\right\}\left(|z|^{2}+|z||c|+|c|^{2}\right)
$$

The forward error from a change in c is $B e_{c}$, so we want

$$
|B|\left|e_{c}\right|=\frac{|B| k}{L}>\left|e_{z}\right|=\max \left\{|D|, \frac{|E|}{2},|F|\right\}\left(|z|^{2}+|z||c|+|c|^{2}\right)
$$

so

$$
|z|^{2}+|c||z|+\left(|c|^{2}-\frac{|B| k}{L \max \left\{|D|, \frac{|E|}{2},|F|\right\}}\right)<0
$$

which is a quadratic in $|z|$ so can be solved; we need to minimize the result for all c in the view of radius $r_{c}=k \frac{\sqrt{w^{2}+h^{2}}}{2}$, which gives:

$$
|z|<\min _{|c|<r_{c}}\left\{\frac{-|c|+\sqrt{|c|^{2}-4\left(|c|^{2}-\frac{|B| k}{L \max \left\{|D|, \frac{|E|}{2},|F|\right\}}\right)}}{2}\right\}
$$

In the limit $|c| \rightarrow 0$ this simplifies to

$$
|z|<\sqrt{\frac{|B| k}{L \max \left\{|D|, \frac{|E|}{2},|F|\right\}}}
$$

implementation

input

- $C:=$ view center (high precision)
- $M:=$ reference count limit, can be lower than N if periodic
- $N:=$ iteration count limit
- $h, w:=$ image size in pixels
- $k:=$ pixel spacing $(k=4 /(h \times$ Zoom factor $))$
reference calculation

```
Z[M] low precision array
Z := 0 (high precision)
m := 0
while |Z| < 2 && m < M
    Z[m] := round(Z)
    Z := Z^2 + c
    m := m + 1
```

table data

```
struct TableItem
{
    l : int
    r : real
    A, B : complex
}
dmax := O(log_2(M))
Table[dmax] : ptr TableItem
```

table initialization

```
Table[0] := allocate(M - 1, TableItem)
parallel for m := 1 to M - 1
    A := 2 Z[m]
    B := 1
    r := max( 0, |Z[m]| - |B| k h) / (|A| + 1) )
    Table[0][m-1] = { l, r, A, B }
```

table merging

```
for d := 0 to dmax
    Table[d + 1] := allocate((count(Table[d]) + 1) / 2, TableItem)
    parallel for j := 1 to count(Table[d + 1])
            jx := 2 (j - 1);
            jy := jx + 1;
            if (jy < count(Table[d]))
                    x := Table[d][jx]
                    y := Table[d][jy]
                    A := y.A * x.A
                    B := y.A * x.B + y.B
                    r := min( x.r, max( 0, (y.r - |x.B| h k) / |x.A| ) )
                    Table[d + 1][j - 1] := { l, r, A, B }
            else
                    Table[d + 1][j - 1] := Table[d][jx]
    if count(Table[d + 1]) == 1
```

```
break
```


table lookup

Find Table[d][j] with largest 1 such that $m=(j \ll d)+1$ and $r>|z|$. Result may be null if no such TableItem.

```
pixel iteration
while
        iteration < Iterations &&
        perturb_iteration < PerturbIterations &&
        |Z+z| < EscapeRadius
    while
            iteration < Iterations &&
            perturb_iteration < PerturbIterations &&
            |Z+z| < EscapeRadius &&
            t := lookup table with reference iteration and |z|
        // bla iteration
        // rebase if required
    // perturbation iteration
    // rebase if required
```


benchmarks

AMD Ryzen 7 2700X Eight-Core Processor desktop with 16 CPU threads. 1920x1080 image resolution.

Dinkydau's "Flake"

- mandelbla: 0.5 s
- kf-2.15.5~git (prerelease): 2.6s
- kf-2.15.4: 5.1s

Dinkydau's "Evolution of Trees"

- mandelbla: 2.3 s
- kf-2.15.5~git (prerelease): 37s
- kf-2.15.4: 1m21s

Fractal Universe "Hard Location"

- mandelbla: 39 s
- kf-2.15.5~git (prerelease): not attempted
- kf-2.15.4: not attempted

