# Julia Size
The central feature of a Julia set associated with a baby Mandelbrot set is a circle.
Let \(f_0 = 0, f_1 = c, f_2 = c^2 + c, \ldots\) be the orbit of the origin.
Consider \(z_0 = \lambda\) on the boundary of the circle.
Then \(z_1 = c + \lambda^2 = f_1 + h\).
Write the Taylor expansion about \(f\):
\(z_p = f_p + \frac{\mathrm{d} f_p}{\mathrm{d} f_1} h + \ldots\).
If \(c\) is periodic with period \(p\), then \(f_p = 0\) and you can pick \(z_0\) on the boundary of the circle such that \(z_0 = z_p\).
This gives \(\lambda = \frac{\mathrm{d} f_p}{\mathrm{d} f_1} \lambda^2\), that is,
\[ \lambda = 1 / \frac{\mathrm{d} f_p}{\mathrm{d} f_1}\]
# 1 C99 Code
#include <complex.h>
double _Complex m_julia_size(double _Complex c, int p)
{
double _Complex z = c;
double _Complex dz = 1;
for (int q = 1; q < p; ++q)
{
dz = 2 * z * dz;
z = z * z + c;
}
return 1 / dz;
}
# 2 Examples
Circle: \(c = 0\), \(p = 1\): \(\lambda = 1\).
Airplane: \(c = -1.7548\ldots\), \(p = 3\): \(\lambda = -0.10753\ldots\).
Kokopelli: \(c= -0.15652\ldots + i 1.0322\ldots\), \(p = 4\): \(\lambda = -0.074812\ldots + i 0.038616\ldots\), \(|\lambda| = 0.084191\ldots\).