# Misiurewicz Point (“Naive”)
See Preperiodic Mandelbrot set Newton basins (2013).
A preperiodic Misiurewicz point \(c\) of preperiod \(q\) and period \(p\) satisfies:
\[ F^{q+p}(0, c) = F^{q}(0, c) \]
A naive implementation of Newton’s root finding method iterations for a Misiurewicz point takes the form:
\[ c_{m+1} = c_m - \frac{F^{q+p}(0, c_{m}) - F^{q}(0, c_{m})}{\frac{\partial}{\partial c}F^{q+p}(0, c_m) - \frac{\partial}{\partial c}F^{q}(0, c_m)} \]
# 1 C99 Code
#include <complex.h>
double _Complex m_misiurewicz_naive
(double _Complex c0, int q, int p, int n)
{
double _Complex c = c0;
for (int m = 0; m < n; ++m)
{
double _Complex z = 0;
double _Complex dc = 0;
double _Complex zp = 0;
double _Complex dcp = 0;
for (int i = 0; i < q + p; ++i)
{
if (i == q)
{
zp = z;
dcp = dc;
}
dc = 2 * z * dc + 1;
z = z * z + c;
}
c = c - (z - zp) / (dc - dcp);
}
return c;
}